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Preface

The scope of this book is to give an introduction into the physics of solid, crystalline
surfaces as well as an overview over the experimental techniques used to study such
surfaces. Theoretical concepts are only briefly introduced when they are needed. The
main focus lies on the phenomena and their experimental investigation. The text covers
only a fraction of the field and the choice is rather subjective. The most important
physical phenomena and experimental techniques should be covered, however.
There are many other general books on surface physics. Here are some that can serve
for further reading:
• Modern Techniques of Surface Science by T. A. Delchar, and D. P. Woodruff,

Cambridge Solid State Science Series, 1994.
• Physics at Surfaces by A. Zangwill, Cambridge Univ. Press, 1988.
• Solid Surfaces, Interfaces and Thin Films by H. Lüth, Springer, 2010.
• Concepts in Surface Physics by M. C. Desjonqueres, D. Spanjaard, Springer, 2012.
• Physics of Surface and Interfaces by H. Ibach, Springer, 2006.

A more specific list for further reading is given in the end of each Chapter and some
references are given in the text. Note, however, that this is a textbook and not a review
article and the references are merely intended to help you with finding a more in-depth
discussion of the subjects.
Each Chapter ends with a list of discussion questions you can use to test your under-
standing of the text and with a few problems to further deepen your understanding of
the concepts introduced. The problems marked by (*) are more difficult and meant as
a challenge.
This book is self-published as an ebook and both of these concepts are new to me. My
hope is that this new approach of publishing will provide the student with a useful text at
at more affordable price than the usual textbooks, while at the same time ensuring that
the costs for the technical realisation, ISBN numbers, distribution and so are covered.
An important issue for this approach to publishing is quality control, something that
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can only be ensured through testing. I am therefore very grateful to my colleagues
Jeppe Vang Lauritsen at Aarhus University and Christoph Tegenkamp at the University
of Hannover, as well as their students, for using a previous version of the book in their
courses and for providing valuable feedback and corrections.
I gratefully acknowledge the help from my colleagues David Adams and Flemming Besen-
bacher who I initially joined in teaching the surface science course at Aarhus University.
I have used several electronic pictures from David here. Many of the other images have
been made by Erik Holst Mortensen. Over the years, many other colleagues have con-
tributed with valuable suggestions, discussions, examples and figures to the development
of this text. I specifically acknowledge the input from Alessandro Baraldi, Silvano Lizzit,
Justin Wells, Ivan Stensgaard, Erik Lægsgaard, Lars Petersen, Anders Tuxen, Georg
Enevoldsen, Jeppe Lauritsen, Liv Hornekær, Søren Ulstrup, Marco Bianchi, Meike Stöhr,
Philip King, Karsten Pohl, Wolfgang Theis, Federico Rosei, Carsten Busse and Anton
Tamtögl. I also thank the many students who have followed the surface science course
and contributed with corrections and suggestions. Finally, I would like to thank my PhD
and postdoctoral supervisors Alex Bradshaw, Phil Woodruff and Ward Plummer who
introduced me to the subject of surface physics.
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Chapter 1

Introduction

This book gives a brief introduction into the physics of solid surfaces their experimental
study. Surfaces and interfaces are everywhere and many surface-related phenomena
are common in daily life (texture, friction, surface-tension, corrosion, heterogeneous
catalysis). Here we are concerned with understanding the microscopic properties of
surfaces, asking questions like: what is the atomic structure of the surface compared to
that of the bulk? What happens to the electronic properties and vibrational properties
upon creating a surface? What happens in detail when we adsorb an atom or a molecule
on a surface? In some cases, establishing a connection to the macroscopic surface
phenomena is possible. In others, the microscopic origin of these phenomena is not
understood in detail. We will mostly concentrate on simple model systems like the
clean and defect-free surface of a single-crystal substrate. Such things do of course only
exist in our imagination but the technological progress in the last 50 years has made it
possible for model experiments to get quite close to this ideal. This together with the
progress in surface science theory makes it meaningful to compare experimental results
to quantitative calculations.
One of the most important motivations in surface science is the understanding of het-
erogeneous catalysis. The fact that the presence of a solid could accelerate a chemical
reaction without modifying the solid was first discovered in the early 19th century.
Knowledge about catalysis has then rapidly grown and been the basis of the developing
chemical industry. In the beginning, the microscopic mechanism of the catalytic pro-
cess was, of course, unknown. Much was tried and “good” catalysts were made from
experience. A typical surface science experiment on an “ideal” single crystal surface in
ultra-high vacuum is rather far away from the conditions a real catalyst is working in: the
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catalyst may be made of small metal particles dispersed on an inert substrate in a high
gas pressure and at elevated temperature. Nevertheless, the surface science approach
can give important information about many fundamental processes in catalysis. But
there are of course situations where this is not enough. Therefore one tries to move into
a direction where one is closer to the real catalyst but still very controlled. One can, for
example, study the catalytic properties of well-defined metal clusters on a well-defined
surface. The ultimate goal is of course to really understand the catalytic reaction in all
steps and to improve the catalyst (make it cheaper or more efficient). Closely related
to this is the issue of corrosion. Questions are: What are the chemical reactions leading
to corrosion? How do they take place on the surface and what can we do to prevent
them?
Another reason for the strong interest in surfaces is related to the semiconductor industry.
There is a need to build ever smaller structures in order to achieve higher integration
on computer chips. One consequence of small structures is that the relative importance
of the surfaces is increasing. Another, more practical, consequence is the need to build
these structures with high precision and to have flat interfaces between them. This
is also an issue in the growth of thin and ultra-thin films and multilayers needed for
semiconductors, magnetic storage, coatings and so on. Surface Science research on
semiconductor surfaces is much closer to the real technological world than the research
in heterogeneous catalysis. Most semiconductor devices are build starting from single-
crystal silicon wafer. Related to the increased importance of surfaces in connection
to smaller semiconductor structures is the field of nano technology. The electronic
properties of nano structures are governed by quantum-confinement effects and the
surface sets up the boundary conditions. In some cases, it is even such that surface-
localised electronic states dominate the electronic properties of a nano object.
A more fundamental issue is that surfaces and interfaces provide a unique opportunity to
study (nearly) two-dimensional electronic systems. The most famous examples for this
is quantum Hall effect where a two-dimensional electron gas is generated in a semicon-
ductor heterostructure. Such a two-dimensional electron gas can also be created near
a surface and studied with a range of powerful surface science techniques. Another op-
portunity to study electronic phenomena in (nearly) two dimensions are surface-localised
electronic states that exist on many pristine surfaces.
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Chapter 2

From Solids to Surfaces

2.1 Introduction

In the present Chapter, we briefly review the basic ideas of solid state physics and
establish a link to our actual subject, the physics of solid surfaces. It is assumed that
you have already followed a basic course on solid state physics. Hence, any detailed
treatment is omitted and we merely focus on some “highlights”.
When trying to learn something about solids, the biggest problem one encounters is that
a macroscopic solid contains very many (1023) atoms. It is therefore impossible to solve
any equations of motion, classical or quantum, in a direct way. The key for a quantitative
description of the electronic and vibrational properties of solids is the fact that most solids
are crystals and the crystal symmetry can be exploited to greatly facilitate the solution
of the problem. This Chapter thus reminds you about the description of crystals in real
and reciprocal space and it explains some basic ideas relating the surface properties to
those of the bulk.
We divide the properties of a solid into electronic contributions and lattice vibrations.
This division is not without problems: In principle one would have to solve the Schrödinger
equation for the whole system, with the co-ordinates of all the electrons and all the ions.
The reason why separating the electronic and vibrational degrees of freedom works well,
is that the ions are so much heavier and slower than the electrons. When the ions move
out of their equilibrium-position the electrons follow quickly but they stay in their ground
state. They just move to another ground-state with higher energy. When the ions are
moving back, the electrons follow to their initial ground state. The good approximation
that the electrons remain in their ground state is called adiabatic or Born-Oppenheimer
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approximation.
The mass difference is also reflected in the different energy scales in electron and ion
motion: typical kinetic energies of electrons are in the region of several eV while the
vibrational (phonon) energies are several meV. The strategy to follow is therefore to
solve the electronic structure assuming a rigid crystal. Then the vibrational properties
can be calculated from the known electronic properties. Finally, the influence of the
vibrational states on the electronic system can be considered: it is usually just a very
small (but potentially important!) change.

2.2 Lattice and reciprocal lattice

2.2.1 Lattice

Many solids exist in a crystalline form. Not only the ones that appear as large single
crystals in nature (like diamond, many minerals and salts) but also metals grow as
crystals, with bigger chunks of material often made from small crystallites with different
orientations. Since these crystallites are still much bigger than the atomic spacings, we
can view the solids as ideal crystals and use the perfect periodicity to facilitate many of
the problems.
We start with some basic definitions. The most fundamental is that of a Bravais lattice.
It is defined as a lattice of points with position vectors

R = n1a1 + n2a2 + n3a3. (2.1)

Examples for a Bravais lattice are the body centred cubic (bcc) lattice and the face
centred cubic (fcc) lattice shown in Fig. 2.1.
Given the Bravais lattice, the primitive unit cell can be defined: it is any volume of space
that, when translated through all the vectors of the Bravais lattice, fills all of space
without either overlaps or voids. There are many possible choices for this primitive unit
cell. One very common is the Wigner-Seitz cell. This cell has the full symmetry of the
lattice and is defined as the region of points closer to a given lattice point than to any
other lattice point. The Wigner-Seitz cells of the bcc and fcc lattice are also given in
Fig. 2.1.
Finally, a real crystal can be described by a Bravais lattice and a so-called basis. The
basis is a fixed arrangement of atoms or molecules that is placed on every point of the
Bravais lattice. It can just be one atom or it can be a whole protein in crystals used for
protein structure determination by x-ray diffraction.
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(a) (b)

(c) (d)

Figure 2.1: (a) The body-centred cubic (bcc) and (b) the face-centred cubic (fcc) Bravais
lattice. The vectors spanning the lattices are given as arrows. (c), (d) The Wigner-Seitz
cells for the fcc and bcc lattice, respectively.

The basis for the fcc and bcc lattices is just one atom but in order to see this, one has
to realise that the cube is not the primitive unit cell. The Bravais lattice vectors actually
spanning the primitive unit cells are indicated in Fig. 2.1(a) and (b).

2.2.2 Reciprocal lattice

Starting from the Bravais lattice, the reciprocal lattice can be defined as the set of
vectors G that yield plane waves with the periodicity of the Bravais lattice. This means
that if G belongs to the reciprocal lattice of a Bravais lattice with points R then the
relation

eiG·(r+R) = eiG·r (2.2)

or

eiG·R = 1 (2.3)

must hold.
The reciprocal lattice vectors also form a Bravais lattice

G = n1b1 + n2b2 + n3b3. (2.4)
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and the vectors b1,b2,b3 spanning this lattice can be constructed explicitly by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
b2 = 2π

a3 × a1

a1 · (a2 × a3)
b3 = 2π

a1 × a2

a1 · (a2 × a3)
(2.5)

From this, it is easy to derive the very useful relation.

ai · bj = 2πδij. (2.6)

For the examples in Fig. 2.1, one finds that the reciprocal lattice of the fcc Bravais
lattice is the bcc lattice and for the bcc Bravais lattice, it is the fcc lattice.
The concept of the reciprocal lattice allows us to re-write many solid state problems
in a much simpler way by making use of the crystal symmetry. Take for example a
one-dimensional lattice with lattice spacing a. A periodic function on this lattice, such
as the charge density, fulfils

ρ(x) = ρ(x+ na), (2.7)

with n being an integer number. ρ can be written in a Fourier series

ρ(x) =
∑

n ρne
i(n2π/a)x, (2.8)

where 2π/a is the distance between the points of the one-dimensional reciprocal lattice.
For the analogous three-dimensional charge density

ρ(r) = ρ(r + R), (2.9)

the same construction can be made with the sum taken over the reciprocal lattice vectors
G

ρ(r) =
∑

G ρGe
iG·r. (2.10)

At first glance, the advantage of writing down this series may not be obvious: In real
space we have to describe ρ for every point in the unit cell and there are, in principle,
infinitely many points, but in reciprocal space we also have an infinite series. However, it
turns out that it is often sufficient to use very few Fourier coefficients to get an accurate
description of ρ.
It is also possible to define a primitive unit cell in the reciprocal lattice. Of special
importance in the theory of electronic and vibrational states is the Wigner-Seitz cell in
the reciprocal lattice. It is called the first Brillouin zone. The first Brillouin zones for
the bcc and fcc lattice look like the Wigner-Seitz cells for the fcc and bcc lattice in Fig.
2.1, respectively.
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Another point worth mentioning in connection with our actual subject, the physics of
surfaces, is the definition of the Miller indices. These are used to define a lattice plane
or the orientation of a surface plane. A plane can be conveniently defined by a vector
perpendicular to the plane and the Miller indices use the reciprocal lattice vectors to do
this: the lattice plane with the Miller indices (h, k, l) is the plane perpendicular to the
reciprocal lattice vector hb1 +kb2 + lb3. In a simple cubic lattice, the reciprocal lattice
is also simple cubic and the bi vectors have the same direction as the ai vectors. Thus,
the (h, k, l) plane is not only perpendicular to the hb1 + kb2 + lb3 vector but also to
the ha1 + ka2 + la3 vector and the construction is trivial (see Fig. 2.2).
For the definition of lattice planes, the bcc and fcc lattice are usually treated as simple
cubic but we need to be aware of the possible confusion arising from this. For non-cubic
materials it is very important to remember the actual definition of the Miller indices:
they give a direction in reciprocal space, not in real space.

(1,0,0)

a1

a3

a2

(1,1,0)

a1

a3

a2

(1,1,1)

a1

a3

a2

Figure 2.2: Three lattice planes and their Miller indices in the simple cubic lattice.

2.2.3 Directions in real and reciprocal space

There are some conventions for specifying surface orientations and directions on surfaces
that are worth summarising here. Surface orientations are generally given by the Miller
indices (h, k, l), as illustrated in 2.2 for the simple cubic lattice. Often, the commas
in the Miller indices are omitted and one writes (hkl). If the surface direction needs
to be specified with a negative index, it can be written as e.g. (h − kl) but often the
minus sign is replaced by a bar as in (hk̄l). While the Miller indices in round brackets
(hkl) denote a specific direction in reciprocal space and the surface perpendicular to
this direction, indices in curly brackets {hkl} denote a family of symmetry-equivalent
directions or planes. In a cubic crystal, {100} could be used in order to refer to the
equivalent (100), (010), (001), (001̄), (01̄0) and (1̄00) planes.
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Similar conventions apply for directions in real space. Square brackets are used to give
specific directions. For example [lmn] corresponds to the real space direction la1+ma2+
na3. Again, a bar above a number means minus. Angle brackets are used to denote
equivalent directions in real space. As an example, the [001], [010], [100], [001̄], [01̄0]
and [1̄00] directions could be summarised as the 〈001〉 direction.
Finally, it is useful to know that Miller indices for hexagonal structures are often given
with four numbers instead of three, i. e. (hkil). In this notations, the last index l refers
to the direction of the hexagonal c axis and the additional index i can be calculated by
i = −(h+ k).

2.2.4 Lattice and reciprocal lattice at surfaces

Now we discuss how to apply the concepts of the Bravais lattice, the basis and the
reciprocal lattice to a solid’s surface. Cleaving a bulk crystal results in two semi-infinite
half-crystals, each terminated by a surface. This affects the global symmetry of the
system: parallel to the surface, crystalline translational symmetry is conserved but per-
pendicular to the surface, it is broken, at least at the actual surface position. The surface
as such could be viewed as a perfectly periodic two-dimensional system but very often
the three-dimensional character of the bulk under the surface cannot be ignored and
the system is effectively between two-dimensional and three-dimensional. We will see
several examples of this.
When the surface is formed, one could assume that all the atoms stay at the same
positions as before in the bulk. This is actually often not the case but we assume it for
now. For the newly formed surface, we now define a two-dimensional Bravais lattice and
illustrate this using the example of the fcc(001) surface, i.e. the termination of an fcc
crystal with a plane of Miller indices (001). Fig. 2.3 shows how this surface is related to
the bulk fcc crystal structure as well as an atomistic model for the surface. It is simple
to suggest a two-dimensional Bravais lattice for the surface: It consists for the vectors
a′1 and a′2. These are perpendicular to each other and have the length a/

√
2, with a

being the side length of the bulk cube.
We can also construct the surface Bravais lattice starting from the bulk Bravais lattice.
The bulk Bravais lattice is given by

a1 =
a

2

 0
1
1

 , a2 =
a

2

 1
0
1

 , a3 =
a

2

 1
1
0

 , (2.11)

and we are seeking two non-collinear vectors in the surface plane. These can be con-
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Figure 2.3: The fcc(001) surface. (a) The surface (shaded) in relation to the bulk structure
and the vectors spanning the bulk Bravais lattice. Not all the lattice points on the faces
of the cube are shown. (b) Top-view of the surface showing the surface Bravais lattice
vectors. The purple square corresponds to the top of the cube in (a).

structed by

a′1 = a3 =
a

2

 1
1
0

 , a′2 = a1 − a2 =
a

2

 −1
1
0

 , (2.12)

i. e. we get the same result as from our naive guess, two vectors that are perpendicular
to each other and have the length a/

√
2. It is easily seen that they also have the same

directions as the vectors resulting from our direct construction in Fig. 2.3.
What is the basis for the surface? This question is not so easily answered. If we only
view the first layer of atoms as “the surface”, the definition of the basis is clear enough:
Given the Bravais lattice, it would have to contain sufficiently many atoms that we can
describe all the atoms in the surface layer. In our case, this would be just one atom, of
course. If, however, we are interested in the atoms of deeper layers as well, we could
have to include them in the basis. A pragmatic approach to this would be to define
the crystal as a stack of identical units, possibly made of several atomic layers, with the
same basis for each unit.
The construction of the surface reciprocal lattice is illustrated using the same example
of the fcc(001) surface in Fig. 2.4. We can directly construct the vectors spanning the
surface reciprocal lattice b′1 and b′2 from the surface Bravais lattice vectors a′1 and
a′2 using (2.6). We immediately see that b′1 must be perpendicular to a′2 and hence
parallel to a′1. Moreover, b′1 ·a′1 = 2π and therefore the length of b′1 must be 2π

√
2/a.

b′2 has the same length and is perpendicular to b′1.
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Figure 2.4: (a) Construction of the surface reciprocal lattice for the fcc(001) surface
directly from the real space Bravais lattice in the plane of the surface. (b) The fcc reciprocal
lattice. The surface plane is the top of the cube and the surface reciprocal lattice can be
obtained by projecting the bulk reciprocal lattice vectors onto this plane. The grey plane is
the same as in Fig. 2.5. (c) The result of this projection, i.e. the cube in (b) viewed from
the top.

We can also obtain the surface reciprocal lattice from a projection of the bulk reciprocal
lattice onto the surface plane. The bulk reciprocal lattice of the fcc lattice is a bcc
lattice, as illustrated in Fig. 2.4. Explicitly, it is given by

b1 =
2π

a

 −1
1
1

 , b2 =
2π

a

 1
−1
1

 , b3 =
2π

a

 1
1
−1

 , (2.13)

A normal vector perpendicular to the surface is

n =

 0
0
1

 . (2.14)

Note, that this vector is obviously perpendicular to the surface we are interested in
here (it is directed along the z axis) but this direction is not consistent with the (hkl)
reciprocal lattice vector being perpendicular to the surface. In fact, only the (110)
reciprocal lattice vector would be perpendicular to the surface. The reason is that we
have defined our (001) surface with respect to the cubic unit cell, as one usually does for
fcc and bcc surfaces, and not with respect to the primitive unit cell. This is a convenient
convention but one has to keep in mind that it is applied here!
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In order to project the reciprocal lattice out onto the surface, we take each reciprocal
lattice vector and subtract the component of this vector that is perpendicular to the
surface. For b1 we get

b1 − b1 · n =
2π

a

 −1
1
1

− 2π

a

 −1
1
1

 ·
 0

0
1

 =
2π

a

 −1
1
0

 (2.15)

and for the two other vectors we get

b2 − b2 · n =
2π

a

 1
−1
0

 , b3 − b3 · n =
2π

a

 1
1
0

 . (2.16)

All of these vectors have the same length as inferred when we directly calculated the
surface reciprocal lattice from the surface Bravais lattice. The first two are pointing
in opposite directions, perpendicular to the third one. We thus get two independent
vectors for the surface reciprocal lattice.
It is curious that we have to project the bulk reciprocal lattice onto the surface in order
to get the correct surface reciprocal lattice whereas we merely take one plane (and not
the projection) of the real space Bravais lattice in order to obtain the surface Bravais
lattice. It is immediately clear why projecting the real space lattice onto the surface
plane is not a good idea: this would lead to too many Bravais lattice points since it
matters in which layer the points are. For the reciprocal lattice, on the other hand, a
projection onto the surface becomes necessary because the periodicity in the direction
perpendicular to the surface is lost and hence the quantum number k perpendicular to
the surface loses its meaning: It does not matter what value k has in this direction, only
the components of the initial k parallel to the surface retain their meaning.
The necessity for projecting out the reciprocal lattice is illustrated in Fig. 2.5(a). Again,
we see how the b′1 surface reciprocal lattice vector is obtained by the projection of the
b3 bulk reciprocal lattice vector in a cut through reciprocal space. If the value of k
perpendicular to the surface is irrelevant, surface reciprocal space points that differ by
b′1 must be completely equivalent. We can see that this is the case when considering the
black dots representing the bulk reciprocal lattice points. When projecting the lattice of
black dots onto the line parallel with b′1, this vector does indeed connect two dots.
Having defined the surface reciprocal lattice, we can go on and define the surface Brillouin
zone. This is the surface analogue to the first Brillouin zone in the bulk and defined in
the same way, merely in two dimensions. For a square lattice, the surface Brillouin zone
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X
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Figure 2.5: (a) Two-dimensional cut through the fcc reciprocal lattice in the grey plane
of Fig. 2.4(b), showing the reciprocal lattice points and a cut through the bulk Brillouin
zones (in green). The b′1 surface reciprocal lattice vector is obtained by the projection of
the b3 onto the surface and it connects bulk reciprocal lattice points that are projected out
onto the surface. (b) Sketch of the fcc bulk Brillouin zone and the projection on the (001)
surface, giving rise to the surface Brillouin zone for fcc(001).

is also a square. Figure 2.5(b) shows the surface Brillouin zone for the fcc(001) surface
in relation to the bulk Brillouin zone. Note that the surface Brillouin zone is parallel to
the square face of the bulk Brillouin zone, but it is larger than this square. Why this
is so is obvious when we consider that the surface reciprocal lattice is a projection of
the bulk reciprocal lattice. The edge point of the surface Brillouin zone (the X̄ point)
must project down to the centre of the hexagon on the bulk Brillouin zone (the L point)
because this point is at half the distance between two projected bulk Brillouin zone
centre points. This is also evident from the cut in Fig. 2.5(a).
The high symmetry points of the bulk Brillouin zone are typically denoted by letters such
as Γ for the centre and X,L and so on for points on the faces. For the surface Brillouin
zone, similar notations are used but the two-dimensional high symmetry points carry a
bar over the letter. The centre of the zone, for example, is called Γ in the bulk and Γ̄
on the surface.
For all the above considerations, we have assumed that the atoms near the surface simply
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remain at the position they had in the bulk solid when the surface is formed. This does
not have to be so: Imagine the forces on an atom at the new surface. The atom loses
some of its nearest neighbours and an entirely new energetic situation arises. The first
layer atoms could move further away from the remaining neighbours or closer towards
them. Such a change of the first interlayer spacing is a called a relaxation.
Not even the periodicity parallel to the surface needs to remain the same as in the bulk:
On many surfaces, especially on semiconductors, the atoms try to find new “partners”
for the broken bonds sticking into the vacuum. This can lead to a reconstruction of the
surface where the periodicity parallel to the surface is not the same as in the bulk. We
will discuss this in more detail in Section 7.2.
We conclude this section by again illustrating the usefulness of the reciprocal lattice, now
with special emphasis to the two-dimensional surface reciprocal lattice. Figure 2.6(a)
shows a Scanning Tunnelling Microscopy (STM) image of a Pt(111) surface and Fig.
2.6(b) shows the Fourier transformation of this image. Pt is an fcc metal and the (111)
surface is a closed-packed surface with hexagonal symmetry. At this point, we do not
have to worry how an STM works or what exactly the picture shows. We can merely
interpret it at the charge density at the surface, resolved on an atomic scale. The charge
density varies with the periodicity of the atomic lattice, it is highest where the atoms
are and we can interpret Figure 2.6(a) as “an image of the atoms”. A Fourier transform
of the charge density should basically be an image of (2.10) with the intensity at the
reciprocal lattice spots being equal to the (magnitude of the) Fourier coefficients of the
charge density. This is indeed the case. We can see that the six spots around the origin
are by far the most intense features. They alone give already a decent description of
the entire STM image. This makes the usefulness of reciprocal space obvious. When
looking closer, weaker features at other reciprocal lattice points can be seen.

(a) (b)

Figure 2.6: (a) Scanning tunnelling microscopy image of Pt(111). (b) The Fourier trans-
formation of this image [1].
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2.3 Electronic states

We briefly recapture different approaches to describe the electronic structure of solids.
In all of these it is assumed that the situation can be described by one electron moving in
the potential of the ions and all the other electrons. For metals, the electrons are largely
free and the electronic states can often be well-described by assuming either completely
free electrons (i.e. a vanishing crystal potential) or nearly free electrons. For more
covalently bonded materials, on the other hand, the electrons are still strongly bound to
their respective atoms and a simple description starts from a linear combination of the
atomic orbitals. Ultimately, all approaches lead to a dispersion of the electronic levels in
reciprocal space, i. e. to a number of energy bands En(k), where the index n numbers
the bands.
Once we have obtained these bands, they are filled up with the available electrons
according to the Fermi-Dirac distribution

f(E, T ) =
(
e
E−µ
kBT + 1

)−1

, (2.17)

where µ is the (temperature-dependent) chemical potential that, for a metal, is approx-
imately equal to the (temperature-independent) Fermi energy EF , the highest energy
reached when filling in the electrons at T = 0.

2.3.1 Free electrons

A possible starting point for a quantum mechanical treatment of the solid’s electronic
structure is to consider free electrons in a box. It can be assumed that this is an
appropriate model to describe a metal. We calculate single particle states and neglect
the electron-electron interaction. We can assume a vanishing potential in the box and
the Schrödinger equation is

Hψ(r) = − ~2

2me

∇2ψ(r) = Eψ(r). (2.18)

The solution must have the form

ψ(r) = Aeik·r +Be−ik·r, (2.19)

where A and B are complex amplitudes. This gives rise to the energy eigenvalues

E(k) =
~2|k|2

2me

=
~2

2me

(k2
x + k2

y + k2
z) (2.20)
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The possible values of k are restricted by the choice of boundary conditions. We can,
for example, require that the wave function must vanish at the border of the box, as
would be the case for an infinitely high potential barrier. Then A and B in (2.19) are
chosen such that the wave functions are of the form

ψ(r) ∝ sin kxx sin kyy sin kzz, (2.21)

and the k values are
kx = π

L
nx; nx = 1, 2, 3, . . .

ky = π
L
ny; ny = 1, 2, 3, . . .

kz = π
L
nz; nz = 1, 2, 3, . . . ,

(2.22)

where L is the side length of the box, that is assumed to be a cube.
Alternatively, we can use periodic boundary conditions, i.e.

ψ(r) = ψ(x, y, z) = ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L), (2.23)

with the solutions of (2.18) written as

ψ(r) ∝ eir·k (2.24)

and the permitted k-points are

kx = 2π
L
nx; nx = 0,±1,±2,±3, . . .

ky = 2π
L
ny; ny = 0,±1,±2,±3, . . .

kz = 2π
L
nz; nz = 0,±1,±2,±3, . . . .

(2.25)

This choice of boundary conditions has no effect on the resulting properties. If we,
for example, calculate the density of states, we get exactly the same result. From a
surface point of view, this appears to be a problem because it should make a difference
if we force the wave functions to vanish at the surface or not. We discuss this in some
more detail below, but here we just point out that these boundary conditions are not
intended to represent a solid with a surface. Indeed, their purpose is to give an accurate
description of a bulk solid, avoiding the difficulty of having a surface.

2.3.2 Electrons in a periodic potential: Nearly free electrons

In a real crystal, the potential is not zero or constant. We do not usually know its precise
form but we do know that it has the same periodicity as the lattice. The Schrödinger
equation is

Hψ(r) = (− ~2
2me
∇2 + U(r))ψ(r) = Eψ(r) (2.26)

21



where U(r) = U(r+R) is the potential. The solutions of this equation are Bloch waves
with the form

ψk(r) = uk(r)eik·r (2.27)

where uk(r) = uk(r+R) is a lattice periodic function. A general property of the Bloch
waves is that

ψk(r) = ψk+G(r) (2.28)

where G is a reciprocal lattice vector. This means that a Bloch wave does not change
when it is shifted by a reciprocal lattice vector. Inserting this into the Schrödinger
equation gives that also

Ek = Ek+G. (2.29)

Since both the wave-functions and the energies are periodic in reciprocal space it is
sufficient to treat both in the first Brillouin zone.
For a simple approach to the electronic structure of metals, one can assume that the
potential is very weak, i.e. that the electrons are nearly free. The green dashed lines in
Fig. 2.7(a) are the resulting bands for such a potential in a one-dimensional lattice of
periodicity a. The bands are merely parabolas, i.e. the solutions for the free electron
case (2.20). However, there is not only one parabola centred at k = 0, but repeated
parabolas with a distance of 2π/a in order to fulfil the requirement (2.29).
This electronic structure changes in an important way if the potential in (2.26) is not
almost zero but takes on a finite value. The lattice periodic potential is described by
the Fourier series

U(r) =
∑

G UGe
iG·r. (2.30)

If we take a one-dimensional real potential and assume that just the first Fourier coeffi-
cient is non-zero, i.e. U∗1 = U−1, we find that free electron band picture in Fig. 2.7(a)
changes, but only in the immediate vicinity of the Brillouin zone boundaries where gaps
appear in the band structure. The size of the splitting is twice the magnitude of the
Fourier coefficient U1 in the potential. If we include more non-zero Fourier coefficients,
we get gap openings at other degeneracy points. A finite U2, for example, removes the
degeneracy of the next band crossing at k = 0. The solid black band structure in Fig.
2.7(a) shows this situation where both U∗1 = U−1 and U∗2 = U−2 are different from
zero.
The opening of band gaps is of fundamental importance for describing the electronic
structure of solids because it gives the possibility to describe not only metals but also
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semiconductors and insulators. For surfaces, band gaps are also very important be-
cause their presence is a necessary condition for the existence of new, surface-localised
electronic states as we shall see in Chapter 8.
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Figure 2.7: Electronic band structure for a one-dimensional periodic potential of lattice
constant a. The dashed green lines are the solution for a periodic but vanishingly small
potential. The black lines are the solution for nearly free electrons with non-vanishing
Fourier coefficients Ug and gaps opening around crossings of the dashed bands. The right
hand side illustrates how a similar band structure is arrived at in a tight-binding model,
starting from the atomic energy levels E0 and E1. These levels are shifted slightly and
broadened into bands of the width nγ and nγ′, respectively, where n is the number of
nearest neighbours and γ, γ′ are determined from the overlap between the wave functions
and atomic potentials at neighbouring sites. The Bloch wave functions are derived from
the atomic orbitals and they are illustrated for the two lowest lying band (s and p) on the
right hand side.

2.3.3 Electrons in a periodic potential: tightly bound electrons

So far, we have viewed the development of band structure by starting from free electrons
and then introducing a (weak) lattice potential that gives rise to deviations from the free
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Chapter 3

Ultra High Vacuum (UHV)

The key-ingredient to surface science experiments is ultra-high vacuum. This means a
pressure in the 10−9 mbar range and below. Only such a low pressure will ensure that a
surface stays clean for a time long enough to do typical surface science experiments. In
the following, the requirement for UHV and some important parts of UHV technology
are described. We also discuss how to obtain a clean surface in the first place.

3.1 Vacuum requirements

We can quickly estimate the vacuum requirements for surface science. Let us imagine a
clean surface in the vacuum vessel. From kinetic gas theory, we can obtain the number
of gas molecules impinging on the surface as

R =
dN

dt
=

P√
2πMkBT

, (3.1)

where M is the molecular mass. The usual units for the pressure in vacuum technology
are torr or mbar (1 torr = 1.3332 mbar = 133.32 Pascal). For a pressure of 10−6 mbar
and a temperature of 300 K, we find the rates of impinging molecules that are given in
Table 3.1.
As an order of magnitude value, a surface has 1015 atoms per square centimetre. This
means that if every rest-gas molecule from the incoming flux sticks to the surface, the
latter will only stay clean for a second or so. If we are not willing to tolerate more
than, say, one percent of contaminating rest-gas molecules on the surface an hour after
cleaning it, then the pressure has to be in the UHV region.
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molecule Mu R(cm−2s−1)
H2 2 1.1x1015

H2O 18 3.6x1014

CO 28 2.9x1014

O2 32 2.7x1014

CO2 44 2.3x1014

Table 3.1: Rate of molecules impinging on a surface in vacuum at a pressure of 10−6 mbar.

It is also interesting to calculate the mean free path λ of the molecules in the gas at a
given pressure, i.e. the mean distance before hitting another molecule. Again, we use
kinetic gas theory and find

λ =
kBT√
2πξ2P

, (3.2)

where ξ is the molecular diameter.
Depending on the ratio of λ and the typical dimensions of the vacuum system d (10 cm),
different flow regimes can be defined when gas passes through the system, e.g. when it
is evacuated by a pump. When λ� d, the flow is called viscous. This is always the case
at ambient pressure. In the opposite limit, when λ � d, the flow is called molecular.
This is the case for typical UHV pressures, where λ is many meters. It means that it
is much more likely that a molecule hits the walls of the vacuum vessel than another
molecule and this has important consequences for pump technology.

3.2 Construction, pumping and bakeout

Before discussing the technical details of an actual vacuum system, we start with some
general considerations and definitions. The objective of vacuum technology is to remove
gas from the recipient. A flow of gas can be defined in terms of the volumetric flow
dV/dt or, more usefully, the flow rate Q as

Q =
d(PV )

dt
. (3.3)

Flow rates are measured in Pa m3s−1 or similar units (one often finds torr for pressure
and litres for volume). Using the ideal gas equation, we obtain

Q =
d(PV )

dt
= kBT

dN

dt
, (3.4)
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so this does indeed corresponds to a flow of particles. The flow rate can be used to
describe different situations, such as the flow through a tube connecting vacuum system
and pump, the removal of particles from vacuum system or an incoming flow of particles
due to a leak in the sealing of the system.
The process of evacuating the system can be described as

− dP

dt
= P

S

VC
−Q0, (3.5)

where VC is the volume of the vacuum chamber, Q0 some incoming flow of particles
discussed below and S the pumping speed. S is measured in m3s−1 but for commercially
available pumps it is most frequently quoted in litres per second (ls−1). To see how the
pump-down of the system proceeds, we first consider the limit of this equation when Q0

is so small that we can neglect it. In this case, (3.5) is solved by

P (t) = P0 exp(− S

VC
t), (3.6)

where P0 is the starting pressure. Such exponential behaviour is indeed found in the
beginning of the pumping process but unfortunately it does not continue, even in the
case of Q0 = 0. The reason is that the pumping speed of a vacuum pump depends on the
pressure. In fact, apart from the pumping speed, vacuum pumps are also characterised
by the lowest achievable pressure (the pressure where S approaches zero) and in order
to achieve UHV, it is usually necessary to use a combination of pumps with different
characteristics, frequently operated in series.
Fig. 3.1(a) shows the pumping diagram for a typical system. A roughing pump is used
to pump the system down into the 10−3 mbar region. A typical roughing pump is an
oil-sealed rotary vane pump. The working principle of this type of pump is illustrated
in Fig. 3.2. It is immediately evident that a rotary vane pump will work well in the
viscous flow regime but not in the molecular flow regime where the mean free path of
the molecules is very long and the chance of the rest gas molecules hitting the small
inlet valve of the pump is small. This explains why the lowest reachable pressure with
this pump is only 10−3 mbar.
The roughing pump is thus used as a first pumping stage in order to establish a pre-
vacuum for another type of pump that can operate in the molecular flow regime. The
pump of choice for this second stage is a so-called turbomolecular pump (see Fig. 3.3).
The pump has a large inlet to its main rotor, increasing the likelihood of molecules
entering the pump. The rotor is designed such that the gas molecules collide with the
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Figure 3.1: (a) Schematic pumping of a typical UHV system. (b) A typical UHV chamber.

fast moving blades and thereby attain some momentum in the direction of the roughing
pump. In order to achieve efficient pumping, the rotation speed has to be very high.
Typical values are up to 80,000 rotations per minute. The lowest pressure that can
be reached with such a pump is in the mid 10−11 mbar region. Note, however, that
this is only possible if the pre-vacuum pressure from the roughing pump is sufficiently
low, because the pressure in the main recipient is influenced by molecules back-flowing
through the turbo pump.
Once a low pressure has been achieved, it can also be maintained by another type of
pump, the so-called ion pump shown in Fig. 3.4. The rest gas in this pump is ionized by
a plasma discharge due to the high voltage between anode and cathode. The ionization
probability is increased by the presence of a magnetic field that makes the charged
particles travel on spiral trajectories. When the ions hit the titanium cathode, they can
be buried in it or react with it. Additionally, titanium is sputtered off the cathode and
deposited onto other parts of the pump. This titanium can react with the rest gas and
increases the pumping effect. The ion pump does not remove the rest gas from the
system. It just binds it such that it cannot contribute to the pressure any more. The
current provided by the high-voltage power supply is proportional to the pressure in the
system. Ion pumps can therefore also be used to estimate the pressure. The ion pump
can be operated at pressures between 10−3 and 10−11mbar. Operating the pump at too
high a pressure obviously reduces its lifetime.
Another way of “pumping” is the use of a cold trap. This could be any surface in
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4.2 Why electrons: The inelastic mean free path

As mentioned above, one of the main motivations to use electrons in surface science is
that they allow for surface-sensitive spectroscopy, and the reason for this is their short
inelastic mean free path in matter. This inelastic mean free path λ is determined by
collisions and defined as in the Drude model for conduction in metals:

λ(Ekin) = v(Ekin)τ, (4.1)

where v is the velocity and τ is the collision time. In the Drude model, τ is the mean time
between two scattering events with the ions of the lattice. In a more realistic picture
of solids, the (perfect) lattice does not give rise to inelastic scattering but deviations
from this perfect lattice do. Then τ is given by the probability of inelastic scattering,
no matter by what mechanism.
We are interested in electron energies between a few eV and many hundred eV. The
mean free path of the electrons in this regime is plotted in Fig. 4.2. The dashed curve
shows a calculation of the mean free path independent of the material and the points
are measured data from many elemental solids. The data points scatter around the
calculation. The curve is therefore often called a universal curve. We shall see that the
reason for this universality is that the inelastic scattering of electrons in this energy range
is mostly involving excitations of conduction electrons. The inelastic mean free path is
related to the conduction electron density and this is quite similar for the elemental
solids.
The mean free path curve has a broad minimum around a kinetic energy of about 70 eV
(note the log-log scale). There it is less than 10 Å. This means that if we observe an
electron with this kinetic energy and this electron has left the solid without suffering an
inelastic scattering event, it must originate from the first few atomic layers. Moreover, if
we can choose the kinetic energy of the electrons, we can change the surface sensitivity.
In the EELS experiment, this can be done because we can vary the kinetic energy of the
incoming beam E0, just by changing the acceleration voltage of the electron gun. If we
choose E0 ≈ 70 eV, we know that the elastically scattered electrons must have been
scattered in the first few atomic layers and we also know that the discrete loss peaks,
for example to one particular phonon, must have happened in the first few layers. We
can decrease the surface sensitivity either by going to very low energies of only a few eV
or to much higher energies of a several keV.
In some cases, we do not have the option to change the electron kinetic energy in order
to tune the surface sensitivity of the experiment. In this situation, a frequently used
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Figure 4.2: The inelastic mean free part of the electrons in solid. The dots are measure-
ments the dashed curve is a calculation. After Ref. [5].

trick is to change the experimental geometry. This is illustrated in Fig. 4.3. With a
given inelastic mean free path, we can greatly enhance the surface sensitivity by going
to a grazing incidence (or emission) geometry. In this way, the electrons travel mostly
close to the surface, even if their mean free path is relatively long.

4.3 Physics of the inelastic mean free path

Let us now consider the interaction of electrons with solids in some more detail in order
to understand the basic physics of the electron inelastic mean free path. Before we do
this, we briefly discuss the difference between inelastic and elastic scattering and the
conditions for the latter process.
In an elastic scattering event the electron’s kinetic energy is (by definition) conserved,
i.e.

Es = E0, (4.2)

where E0 is the energy of the incoming electrons and Es that of the scattered electrons. If
we treat the electrons as a particle wave of a certain de Broglie wavelength λe = 2π/k,
we can apply the usual von Laue scattering theory. In order to observe constructive
interference from the scattered electrons, we know that the Laue conditions needs to be
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Figure 4.3: With a given inelastic mean free path, the surface sensitivity of a scattering
experiment can be influenced by the experimental geometry. The near normal incidence
geometry in (a) is considerably less surface sensitive than the gazing incidence geometry in
(b).

fulfilled, i.e. k′ − k = G, where G is a reciprocal lattice vector and k (k′) is the wave
vector of the incoming (outgoing) electron wave.
However, the Laue conditions are usually derived for infinitely periodic, three-dimensional
bulk solids but here we have a situation in which the surface terminates the bulk. As
we will discuss in more detail in Chapter 7, this causes the Laue condition perpendicular
to the surface to be relaxed, as the periodicity in this direction is lost. We retain a
two-dimensional version of the Laue condition, stating that the momentum parallel to
the surface is conserved, apart from a surface reciprocal lattice vector g

k‖s = k‖0 + g (4.3)

The crystal itself provides perpendicular momentum such that (4.2) and (4.3) can be
fulfilled simultaneously. Observing the elastically scattered electrons provides information
about the surface reciprocal lattice and the surface geometry. This is exploited in
a technique called low-energy electron diffraction that is explained in more detail in
Chapter 7. For the example of the EELS experiment here, we only need to know that
the intensity of the elastically scattered beam can be increased strongly if the condition
(4.3) is fulfilled.
For now we are more interested in inelastic scattering since it determines the inelastic
mean free path of the electrons and hence the surface sensitivity. We can already guess
some properties of the dominant scattering events from the shape of the universal curve
in Fig. 4.2. The mechanism apparently leads to something “universal” and so it cannot
be related to a very specific property of any material. Moreover, the inelastic scattering
only severely reduces the mean free path for energies higher than 5 or 10 eV, so this
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latter is roughly constant in the region of the atom, the integral will give some finite
value. For very high photon energies, on the other hand, the final state wavelength is
very short and oscillates (and changes sign) rapidly in the region of the initial state. The
product in the overlap integral also oscillates very rapidly with nearly equal positive and
negative contributions that average out to zero when the integration is performed.
The only core level that shows a more complex behaviour is the 3p level of aluminium.
Here the photoemission cross section first decreases but reaches a local minimum, in-
creases again and eventually falls off rapidly. This minimum in the photoemission cross
section close to the threshold is called a Cooper minimum. It is only observed for initial
states where the radial wave function has a node, e.g. 3p but not 2p.
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Figure 5.8: Calculated photoemission cross sections as a function of photon energy for
carbon, oxygen and aluminium, after Ref. [8].

5.1.3 XPS binding energies

The most important information in XPS is contained in the observed binding energies of
the peaks. Not only do they reveal which chemical elements are present, they also give
much more subtle information about the chemical environment these elements are in.
However, an exact understanding of the observed binding energies is rather complicated.
We distinguish between initial state effects and final state effects. The former affect the
binding energy of the initial state before the photoemission event, for example by the
chemical environment of the atom of interest. The latter are due to the photoemission
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event itself and the nature of the final state, i.e. an atom with a missing core electron
or something more complex than that.
Before we discuss the detailed origin the binding energy shifts, we briefly address the
question why some core level peaks are split into two components and others are not.
Such a splitting is caused by the spin-orbit interaction. The spin-orbit interaction is
a relativistic effect and thus most important for heavy atoms. The coupling between
orbital and spin angular momenta is usually described in either the L − S (or Russel-
Saunders) coupling scheme or in the j − j coupling scheme. The L − S coupling is
appropriate for light elements, where one couples the orbital and spin angular momenta
first to each other, to give the total orbital momentum L and the total spin momentum
S and then one combines these to the total angular momentum J . The j − j scheme
is applicable if the coupling between orbital and spin angular momenta is so strong that
l and s are no longer individual good quantum numbers for each electron but only the
total moment j is. Since s = 1/2, j can be either l + 1/2 or l− 1/2. For the resulting
j, there are the usual 2j + 1 orientation possibilities. In a p core level, for example,
one combines l = 1 and s = 1/2 to j = 3/2 and j = 1/2 with 4 and 2 possibilities,
respectively. This reproduces the 6 expected possible quantum states for p electrons. In
an s core level, the orbital angular momentum is zero and hence there is no splitting.
In XPS, the coupling scheme of choice is the j − j coupling because the the splitting
must be strong in order to be observable and this is only the case for heavy elements
where the j − j scheme is more appropriate.
An example of the spin-orbit splitting is given in Fig. 5.9 which shows the 5d level
of Bismuth. In this case, the splitting is quite substantial, more than 1 eV. The two
components correspond to j = 3/2 and j = 5/2. The integrated intensity approximately
reflects the number of electron states in each component which is 4 and 6, respectively.
The anti-parallel alignment of spin and angular momentum (j = l − s) is always the
more favourable one, hence it has the higher binding energy.
Spin-orbit splitting is an initial state effect and almost entirely atomic in nature. The
size of the splitting and the relative intensity of the two components is approximately
the same in all compounds of the same element. Hence, it is also useful to identify the
core levels in the first place. The close vicinity of two peaks and their intensity ratio can
be a hint towards a spin-orbit split core level. The peaks thus cannot stem from an s
level and in order to identify the element in question, one can not only use the absolute
binding energy of the peak but also the size of the splitting as a characteristic quantity.

For our further discussion of XPS binding energies, we continue with other initial state
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Figure 5.9: Illustration of spin-orbit splitting in XPS using the Bi 5d core level.

effects. If one finds, for example, a C 1s peak in the XPS spectrum from a surface, then
one may be able to decide if the carbon is present in a CO2 or in a CF4 molecule. The
reason is, that the electronic environment of the carbon atom determines the electrostatic
potential at the location of the carbon core level wave function. In the case of CF4, the
F atoms draw the carbon valence electrons strongly away from the carbon. For the 1s
electron, this leads to an effective increase of the nuclear charge and it therefore increases
the binding energy observed in XPS. Fig. 5.10 shows the measured and calculated (see
below) binding energies for the C 1s peak in different chemical environments. The
chemical shift over the whole range is rather large, so large that it can even be observed
with a conventional x-ray source. Indeed, a shift in a peak can be quite easily observed
in any spectroscopic technique, even if the resolution is much poorer than the absolute
width of the peak. High resolution is primarily needed to resolve peaks with a small
separation.
The use of synchrotron radiation and the thereby achievable high resolution permits the
observation of much smaller shifts and additional peaks that are caused by atoms of the
same element being in slightly different environments. Fig. 5.11 shows the Ru 3d core
level spectrum from a clean Ru(101̄0) surface. More precisely, it shows the j = 5/2
component that is spectroscopically termed 3d5/2. Apart from the peak characteristic
for ruthenium atoms in their bulk crystal environment, two other peaks are resolved.
These can be assigned to emission from the first two atomic layers of this surface. Such
surface core level shifts (SCLS) are often observed for the transition metals. SCLS both
to higher and to lower binding energies are found, so it is not a priori obvious which
component in the spectrum is caused by the bulk atoms. The fact that the SCLS is
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Figure 5.10: Comparison between experimental and calculated (from Koopman’s theorem
) C 1s binding energies. Note that the agreement is very good but only if one of the axes
is shifted by 15 eV. The agreement is underlined by the line of slope one. After Ref. [9].

observable at all is immensely useful for surface XPS investigations because it permits
a direct spectroscopic access to what is happening to the surface atoms, for example
during a chemical reaction.
The sign of the SCLS observed on transition metal surfaces can be explained using the
picture given in Fig. 5.12. Transition metals are characterised by a partially filled d-
band. When the surface is created, the d-band is narrowed due to the smaller number of
nearest neighbours, as expected from the tight-binding picture discussed in Section 2.3.
Consider the case of a transition metal at the beginning of the series with a d band that
is less than half filled. A band narrowing would move the entire band above the Fermi
level. This would mean that the surface is charged: it is at a chemical potential different
from the bulk. In order to avoid this energy-expensive situation, there is a flow of charge
between the bulk and the surface atoms which leads to an electrostatic potential that
shifts the whole d-band down to lower energies. This electrostatic potential does also
shift the core levels. The corresponding argument is made for the case of more than
half filling. This model largely explains the observed trend over the transition metal
series.
So far, we have only considered how the initial state affects the observed binding energy.
We have not considered the importance of final state effects or discussed how to calculate
the binding energy that we expect to measure in the first place. The most simple
assumption for such a calculation is that the measured binding energy is the orbital
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Figure 5.11: A Ru 3d5/2 core level spectrum from a clean Ru(101̄0) surface. Apart from
the bulk peak Sb, two surface-related peaks are visible, one from the first (S1) and one
from the second layer (S2). After Ref. [10].

energy of the photo ionised electron. This is known as Koopman’s theorem. It is
illustrated in Fig. 5.13(a) and it has been used to calculate the binding energies in
Fig. 5.10. That Figure shows that the approximation of Koopman’s theorem is rather
good. When the calculated core level shifts are plotted as a function of the experimental
values, all points lie on a line of slope one, implying that the trend of a chemical shift
is reproduced correctly. There is, however, a constant offset between the energies.
Apparently, the calculated core level binding energies are systematically too high by
about 15 eV.
The problem in Koopman’s theorem is the following: When an electron is removed from
the core state, the other electrons in the system can reach a new ground state. This
new ground state has a lower energy due to the increased effective nuclear charge of
the photoemitting atom. The relaxation energy Er associated with reaching the new
ground state is transferred on the photoelectron (see Fig. 5.13(b)). This increases the
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relation is denoted by

N

(
|o1|
|a1|
× |o2|
|a2|

)
RΘ (7.5)

where N =”p” or “c” for primitive or centred cells, respectively, and Θ is the angle
by which the oi vectors have to be rotated with respect to the ai (see Fig 7.6). The
nomenclature of Woods has the advantage of simplicity. It is, however, not possible to
describe all surface / adsorbate structures because the rotation angle might not be the
same for both vectors. Some examples for the application of the Woods nomenclature

a1

a2

o1

o2
θ

θ

Figure 7.6: The Woods terminology for describing surface reconstructions and overlayers.

are given in Fig. 7.7. Note that despite of its lack of generality, the Woods nomenclature
is still useful because many structures can be described by it.

fcc(100) fcc(111)

(2x2) c(2x2)(1x1)
(2x2) (1x1) (√3x√3)R30º

Figure 7.7: Examples for structures described by the Woods terminology.

A more general description of the surface structure is the so-called matrix notation .
One writes

o1 = m11a1 +m12a2,

o2 = m21a1 +m22a2.
(7.6)
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or, equivalently, (
o1

o2

)
=

(
m11 m12

m21 m22

)(
a1

a2

)
. (7.7)

The description by a matrix is more complicated but all possible surface structures can
be described. The inspection of the matrix elements directly allows the classification of
the overlayer structures into the three types, illustrated in Fig. 7.8:

1. All the matrix elements are integer numbers: The surface / adsorbate and sub-
strate lattices are called simply related and the combined Bravais lattice is the
same as that of the surface / adsorbate.

2. Some matrix elements are rational: The surface / adsorbate and substrate lattices
are called rationally related. The combined translational symmetry is given by the
distance it takes before surface / adsorbate lattice and substrate lattice come into
coincidence again.

3. Some matrix elements are irrational. In this case the surface / adsorbate lattice
is incommensurate with the substrate, and no true lattice for the whole system
exists.

It is obvious that the relative strength of the substrate-adsorbate and adsorbate-adsorbate
interactions will favour one type of structure over the others.

(a) (b) (c)

Figure 7.8: Types of overlayers. (a) The overlayer is simply related to the substrate. (b)
The overlayer is rationally related to the substrate. (c) The overlayer and substrate lattices
are incommensurate with no common periodicity between substrate and adsorbate lattice.

7.3 Low energy electron diffraction (LEED), LEED
patterns and quantitative structure determina-
tion

Low-energy electrons are for surface structure what x-rays are for bulk crystal structure.
We already know the two reasons for this: (1) the inelastic mean free path for low energy
electrons in solids is short and therefore any technique based on such electrons is rather
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surface sensitive and (2) for low kinetic energies, the electron de Broglie wavelength
λe = h/p is similar to typical distances in crystals and thus diffraction phenomena are
to be expected. The discovery of the electron’s wave nature was a milestone in the
development of modern physics and actually achieved by an experiment that would be
classified as LEED today. It was the diffraction of electrons from a nickel single-crystal
by Davisson and Germer in 1927.
The quantitative structure determination with electrons instead of x-rays is unfortunately
more difficult, because the electrons interact with the solid much more strongly than
x-rays. This results in a refraction of the electron wave at the crystal-vacuum boundary
and, even worse, it leads to a high degree of multiple scattering, such that the usual
approximation of kinematic scattering has to be abandoned.
As we shall see below, there are two major applications for LEED. The first is to learn
something from the pure inspection of the surface diffraction pattern. This gives imme-
diate and direct information about the surface order and quality. When the surface is
reconstructed or covered with an ordered adsorbate layer, the LEED pattern can quickly
give some information about the surface symmetry and periodicities. The second appli-
cation of LEED is the quantitative structure determination. This is more difficult. One
has to measure the diffraction intensities as a function of the electron kinetic energy
and compare them to sophisticated multiple-scattering calculations for a model system.
This model system has to be changed until good agreement between calculated and
measured intensities is achieved. Despite of this complicated procedure, LEED is the
most important tool for quantitative surface structure determination.

7.3.1 Instrumentation

Fig. 7.9 shows a typical LEED apparatus that can be found in almost every surface
science vacuum chamber. The LEED system has two major components: (1) an electron
gun producing a beam of monochromatic electrons and (2) a detector system that
detects only the elastically scattered electrons.
We already know how the electron gun works from Chapter 5. The detector consists of
four metal grids at different voltages and a fluorescent screen. The first grid (counted
from the sample) is on ground potential to ensure a field-free region around the sample.
The next two grids are set to the so-called retarding voltage. This voltage is slightly
lower than the kinetic energy of the electrons produced by the gun. It repels almost all
the inelastically scattered electrons. The elastically scattered electrons pass the next grid
which is set to ground potential again and are then accelerated towards the fluorescent
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Figure 7.9: A LEED system.

screen which is set to a high positive voltage. Elastically scattered electrons hitting the
screen give rise to light emission that is intense enough to be observed by the naked eye.
Behind the screen there is a viewport in the vacuum system so that the LEED pattern
can be observed directly or recorded with a camera.

7.3.2 LEED diffraction pattern and their analysis

While a surface is somewhat between being two-dimensional and three-dimensional,
we start with the assumption of a purely two-dimensional case. The discussion of
diffraction from a two-dimensional lattice is very similar to that of a three dimensional
crystal. We will therefore only give a very short overview and not derive the conditions
for constructive interference. The derivation is exactly the same as for x-ray diffraction
from a three-dimensional crystal.
The diffraction conditions for a two-dimensional lattice are given by the Laue conditions

(k
‖
s − k

‖
i ) = ∆k‖ = g, (7.8)
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where k
‖
i and k

‖
s are the components of the incident (ki) and scattered (ks) electron

wave vectors parallel to the surface and g is a surface reciprocal lattice vector.
What about the third component of the electron’s wave vector, the one perpendicular
to the surface, i.e. k⊥i and k⊥s ? So far, these did not enter the discussion because
the surface lattice is only two-dimensional. For x-ray diffraction, there would be a third
Laue condition but for LEED there is not, because the introduction of the surface has
destroyed the periodicity of the solid in the direction perpendicular to it.
A condition for the vertical components k⊥i and k⊥s does, however, exist because of the
requirement of elastic scattering. Energy conservation implies that the wave vectors
have to have the same length, i.e.

|ks| = |ki|. (7.9)

These two conditions can be illustrated by changing the Ewald construction familiar from
x-ray scattering to the surface case. The bulk situation is shown in Fig. 7.10(a): We draw
a ki-vector that ends at the origin of the reciprocal lattice and has the right length and
direction corresponding to our experimental setup. Then we draw a circle of radius |ki|
around the starting point of the vector. The intersection of this circle and the reciprocal
lattice points gives the possible final ks vectors, for which we observe constructive
interference. This construction ensures both that ∆k = g and that |ks| = |ki| because
of the circle.
For the surface case, there is no Laue condition perpendicular to the surface and this
is taken into account by replacing the discrete points in the Ewald construction by
rods perpendicular to the surface. To justify this, we could argue that the real-space
periodicity in the third dimension is infinite, which means that the reciprocal lattice
points have to be infinitely close to each other, forming the rods. Now we expect
constructive interference whenever a rod intersects the sphere. Note that this is always
going to happen for a sphere of sufficient size, i.e. a sufficiently high electron energy.
It is evident that we will see many more spots in the two-dimensional case than in the
three-dimensional case because the sphere does not have to hit points in k-space, it just
has to intersect with the rods.
We now apply theses concepts to the real LEED experiment. In most cases, the sample
in the LEED setup shown in Fig. 7.9 is oriented such that the electron beam hits the
surface at normal incidence, i.e. such that k

‖
i = 0. This greatly simplifies the analysis of

the diffraction patterns because the diffraction maxima can be directly associated with
the surface reciprocal lattice. In fact, according to (7.8) we obtain that k

‖
s = g so that

the diffraction pattern directly shows the surface reciprocal lattice.
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Figure 7.10: The Ewald construction for (a) the bulk case and (b) the surface case.

We also know the magnitude |ks| of the scattering electrons and with this we can
calculate the emission angle Θhk for a beam corresponding to the surface reciprocal
lattice vector g = hb1 + kb2 from sin Θhk = |g|/|ks|. Consider the imaging by the
LEED apparatus (Fig. 7.11). The position of the diffraction maxima on the viewport
(the distance from the centre axis) is given by

dhk = R sin Θhk = R
|ks| |hb1 + kb2| = R ~√

2me

1√
E
|hb1 + kb2|, (7.10)

where R is the radius of the screen and E the kinetic energy of the electrons.

crystal
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screen

θhk

R
viewport

dhk

Figure 7.11: Imaging of the reciprocal lattice by LEED.

From equation. (7.10) we can see what happens when we change the kinetic energy of
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Figure 7.27: Structure SO2 + O on Cu(111) as determined by SEXAFS. After ref. [32].

extended π∗ state. If we excite electrons from a core level, e.g. the N 1s state close to
the adsorption edge, we expect a strong maximum in the absorption cross section when
we hit the photon energy at which the 1s electron can be excited into an unoccupied
molecular orbital, such as the LUMO, the LUMO+1 and so on.
Observing this enhancement is already very useful as such, because it gives us the
energy position of the unoccupied states of a system. However, the approach can also
be used to extract further geometrical information, for example about the orientation
of the adsorbed molecules. To see this, consider again the dipole selection rule for an s
electron as an initial state. The outgoing electron wave has p symmetry and is oriented
in the direction of the light’s polarisation vector. The matrix element for the excitation
into an unoccupied molecular orbital is now calculated between this p wave and the
wave function of the orbital. Consider the situation in Fig. 7.28(b) and (c) where the
polarisation of the light is chosen such that the resulting p wave is perpendicular to
the plane of the molecule. If the unoccupied molecular orbital has σ∗ character, the
matrix element has to vanish because the product of the σ and the p waves “above”
the molecular plane is the same as “below” the plane, apart from the sign difference in
the p wave. Therefore, this particular excitation is only possible for a molecular orbital
of π character. Similar arguments can be made for the light polarisation vector parallel
to the plane of the molecule. In this case, only an excitation into orbitals of σ symmetry
is possible. Thus, the absorption due to a particular orbital will strongly depend on the
orientation of the molecule with respect to the polarisation vector of the light. If the
molecules are oriented by the surface, a different light polarisation need to be chosen to
achieve the excitation into a given orbital type.
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Figure 7.28: Illustration of the NEXAFS phenomenon. (a) Occupied (filled) and unoccu-
pied (empty) states for a molecule adsorbed on a surface, including core levels and molecular
orbitals. A strong adsorption can be expected when a core electron can be photoexcited
into an unoccupied molecular orbital. (b) and (c) When exciting the N 1s core level of
the Co-phthalocyanine molecule (sketch at the side), the dipole selection rules dictate the
outgoing electron wave to have p character. Excitation into the unoccupied π∗ LUMO is
only possible when the light polarisation vector is perpendicular to the molecular plane.
This can be used to determine the orientation of the plane with respect to the surface.

This can be exploited in order to determine the molecular orientation with respect to the
surface, as illustrated in Fig. 7.29, again using the example of cobalt phthalocyanine.
Shown is a set of NEXAFS absorption spectra near the nitrogen K-edge. From the known
electronic structure of the molecule, the series of peaks closest to the edge are assigned
to transitions into orbitals of π∗ symmetry, whereas the broader peaks further away from
the edge are due to transition into σ∗ states. As the angle between light incidence and
surface normal Θ is changed, drastic intensity variations in the absorption spectrum are
observed. For Θ closest to 0◦ (90◦) the intensity of the σ∗ (π∗) states is highest. Since
the polarisation vector of the light is perpendicular to the light propagation direction, we
can directly conclude from this that the molecule is absorbed with the molecular plane
parallel to the surface.
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Figure 7.29: NEXAFS data do determine the orientation of the molecular plane of ad-
sorbed Co phthalocyanine. After [33].

7.7 Photoelectron diffraction (PhD, PED)

7.7.1 Introduction

Photoelectron diffraction is yet another structural technique that is particularly well
suited to determine the structure of adsorbates on a surface. The principle is illustrated
in Fig. 7.30. Consider the emission of a core level electron from an atom adsorbed on
a surface, as in a typical XPS experiment. In our discussion of XPS, we had described
the final state wave function as an outgoing wave with a symmetry given by the dipole
selection rules (e.g. a p wave for and s initial state). As in EXAFS, the effect of
photoelectron diffraction can only be understood if we acknowledge that this final state
is actually more complicated. A convenient way to think about the final state is as
follows: Consider a detector that measures the photoemission intensity of the adsorbate
core level in a certain direction. There are many possibilities for the photoelectron to
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exerted on the tip and this leads to a small deflection of the cantilever. The deflection
can be measured optically, for example by reflecting a laser beam from the cantilever and
tracking the motion of the reflected light spot. Then this deflection can be measured
as a function of the x and y coordinates parallel to the surface, in the same way as for
the STM.

tip

sample

cantilever

laser beam

Figure 7.48: Principle of the atomic force microscope. An atomically sharp tip is mounted
at the apex of a flexible cantilever. As it is moved across the surface, the force between the
surface atoms and the tip leads to a deflection of the cantilever and this can be measured
by the reflection of a laser beam.

While this approach to AFM is certainly possible, it is not the method of choice in
order to achieve atomic resolution. For this, so-called dynamic AFM is used. The
experimental setup for this is essentially identical to what is shown in Fig. 7.48, apart
from an additional modification needed to excite the cantilever to vibrate at a certain
frequency. This can be done by coupling a magnetic cantilever to an electromagnet or
by inducing a vibration via mechanical coupling to a vibrating piezoelectric crystal. The
vibrating cantilever is then brought close to the surface, so that it starts to “feel” the
force between the tip and the atoms on the surface. Even if the vibrational amplitude is
chosen so large that the cantilever tip is only close to the surface for a small fraction of
the vibrational cycle, this can be enough to make the tip-surface interaction detectable.
This interaction leads to two changes in the forced vibration: a change in amplitude and
a change in resonance frequency.
We discuss a simple model to illustrate this. The model is, in fact, far too simple to
give even a qualitative agreement with experiment but it illustrates the basic physical
principle behind dynamic AFM. We describe the motion of the entire cantilever as a
vibration of a harmonic oscillator with an effective mass m. The oscillator is driven by
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an external harmonic force of amplitude Fext and frequency ω. It has a force constant
γc and, in the absence of damping, a resonance frequency ω0 = (γc/m)0.5. Finally there
is a damping that is proportional to the velocity. The damping is quantified by the
so-called quality factor Q. This is a dimensionless number. The higher Q, the smaller
the damping. The equation of motion is then

m
d2z

dt2
+
mω0

Q

dz

dt
+mω2

0z = Fext cosωt, (7.22)

After some transient time, the steady state solution of this problem is that the oscillator
follows the externally imposed frequency ω, i.e. that

z(t) = A cos(ωt− φ), (7.23)

with A being the (real) amplitude of the oscillation and φ the phase difference between
the motion of the oscillator and the external excitation. For the amplitude one finds

A =
Fext/m√

(ω2
0 − ω2)2 + (ωω0/Q)2

. (7.24)

From this we see that resonance in the absence of damping (Q very large) is achieved
when ω = ω0. The existence of damping slightly changes the resonance frequency. By
taking the derivative of (7.24) with respect to ω one finds that the resonance frequency
in the presence of damping is

ω′0 = ω0

√
1− 1

2Q2
. (7.25)

For the cantilevers used in AFM Q ≈ 104, implying that the damping is sufficiently small
to ignore the difference between ω′0 and ω0. When the excitation frequency is changed
and the amplitude is monitored, a resonance curve as in Fig. 7.49 is obtained.
What happens now if we bring the vibrating cantilever close to the surface? It is easy
enough to modify the equation of motion such that it includes the tip-surface interaction
Fts(z)

m
d2z

dt2
+mω2

0z +
mω0

Q

dz

dt
= Fts(z) + Fext cosωt, (7.26)

but the trouble with solving this equation is that vibrational amplitude of the cantilever
can be quite big in AFM (A > 10 nm), so that the tip spends only a small fraction of
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Figure 7.49: Resonance curves for a free AFM cantilever and a cantilever in the presence
of an attractive / repulsive tip-surface interaction.

the cycle close to the atoms of the surface and Fts(z) varies dramatically over one cycle.
Moreover, Fts(z) is not known and several types of forces contribute to it.
In order to illustrate the key-idea of dynamic AFM, however, we make the (invalid)
assumption that Fts(z) can be linearized for the motion of the cantilever. Then, we can
readily determine the new resonance frequency of the cantilever by combining the force
constant of the free cantilever with that due to the tip-surface interaction

Feff = −mω2
0z + Fts(z) = −(γc + γts)z, (7.27)

giving

ω =

√
k

m
=

√
γc + γts
m

. (7.28)

If we assume that γc � γts, we can expand the vibrational frequency as

ω(γc + γts) = ω(γc) +
d

dγ
ω(γc)γts + ... (7.29)

and finally obtain

ω(γc + γts) ≈ ω0 +
1

m

1

2
√
γc/m

γts = ω0 +
γc
m

1

2
√
γc/m

γts
γc

= ω0 +
ω0γts
2γc

. (7.30)
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The frequency shift depends on the ratio between γts and γc and on the sign of γts for
attractive and repulsive interactions. Is there any hope to measure it? Let us assume that
γts is of the order of a typical interatomic force constant in a solid, something we can get
out of Young’s modulus or the typical vibrational frequencies. This gives γts ≈ 1 Nm−1

(very approximate). The force constant of a typical cantilever is γc ≈ 10 Nm−1 and
since frequencies can be measured very precisely, detecting the resulting shift is quite
possible.
In practice, dynamic AFM experiments use two different strategies. The first tracks the
local resonance frequency, as the tip is moved across the surface. This is done using a
clever feedback mechanism rather than measuring a resonance curve for every point of
an image. The frequency shift can then be used as an image of the surface topography.
This mode of dynamic AFM is called frequency modulation AFM or sometimes also non-
contact AFM. It is the preferred mode for UHV experiments aiming at high resolution.
Using this mode of AFM, it has been possible to obtain atomically resolved images of
many insulator and semiconductor surfaces, among others Si(111)(7 × 7), something
that had long been an elusive goal in AFM [45].
An example of this is given in Fig. 7.50 that shows both non-contact AFM and STM
images of the TiO2(110) surface. The surface structure of TiO2(110) is sketched in
Fig. 7.50(a). It is terminated by rows of oxygen atoms and these rows are clearly visible
in the AFM image of Fig. 7.50(b), along with a weaker corrugation along the rows.
The surface shows prominent defects on the rows and these have been identified as
single hydrogen atoms, forming an OH group with the topmost oxygen atom. The STM
image in Fig. 7.50(c) has been taken simultaneously with the AFM image. In contrast
to all other STM images in this book, it is not a constant current image but just a
measurement of the tunnelling current through the conductive AFM tip as it is moved
along the surface. The image shows the atomic corrugation along the rows even clearer
than the AFM image. The OH groups, on the other hand, are imaged less prominently
than in the AFM image. At first glance, it is quite surprising that taking any kind of
STM image is at all possible because TiO2 has a band gap of more than 3 eV and is thus
too insulting for electron spectroscopy. It turns out, however, that TiO2 crystals can be
heavily doped by heating in vacuum, a process that creates oxygen vacancies. This is
commonly done to allow electron spectroscopy on this material. For an intrinsic TiO2,
the STM image in (c) could not have been taken but the AFM image could.
Another approach to dynamic AFM is to excite the cantilever with a fixed frequency
ω and to monitor the changes in the vibrational amplitude, as the tip approaches the
sample. This technique is called amplitude modulation AFM. We can see how the
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Figure 7.50: (a) Structure of the TiO2(110) surface. (b) Non-contact AFM image. (c)
Tunnelling current measured during the acquisition of the AFM image. After [46].

presence of the surface would affect the amplitude by inspecting the resonance curves
in Fig. 7.49. If we excite the cantilever with the free resonance frequency ω0 and the
tip-surface interaction shifts the resonance curve, we would obtain a smaller amplitude,
no matter if the tip-surface interaction is attractive or repulsive. We could actually
also distinguish between attractive and repulsive tip-surface interactions by exciting the
cantilever slightly off its resonance frequency, at ω′. In this case, a repulsive interaction
would increase the observed amplitude whereas an attractive interaction would decrease
it. Amplitude modulation AFM is frequently used in air and in water to obtain high
resolution. Note again, that the picture of a constant tip-surface force constant is a
strong oversimplification. Even the sign of the force can change in one cycle.

7.10 Further reading

For a more detailed discussion of surface thermodynamics, consult the general surface
physics books listed in the Preface. For the basics of surface structure, consider especially
the book by Woodruff and Delchar. Details on LEED can be found in
• Low energy electron diffraction by J. B. Pendry, Academic Press, 1974.
• Low energy electron diffraction by M. Van Hove, W. H. Weinberg and C. M. Chan,

Springer, 1986.
For photoelectron diffraction, see
• Photoelectron diffraction by D. P. Woodruff in Angle Resolved Photoemission, ed.

S. D. Kevan, Elsevier, 1992.
For x-ray absorption techniques, also consider the book by Woodruff and Delchar
and
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• NEXAFS Spectroscopy by J. Stöhr, Springer 2010.
For STM and AFM, see
• Scanning Probe Microscopy and Spectroscopy: Methods and Applications by

R. Wiesendanger, Cambridge University Press, 1994.

7.11 Discussion and Problems

Discussion

1. Explain the phenomena of surface relaxation and reconstruction and their physical
origin.

2. Explain the Woods and matrix nomenclatures for surface reconstructions and or-
dered overlayers and discuss their advantages and restrictions.

3. Explain how the technique of low-energy electron diffraction (LEED) works exper-
imentally.

4. Discuss what the inspection of a LEED diffraction pattern can tell you about the
structure of a surface under investigation. What type of information is not readily
obtained from a mere inspection of the LEED pattern?

5. What is the reason for the strong intensity variations observed in LEED I-V curves?
6. How can LEED be used to determine surface structures quantitatively, e.g. in

order to find the precise position of adsorbed atoms within the surface unit cell.
7. Explain the basic idea behind x-ray absorption techniques such as NEXAFS, EX-

AFS and SEXAFS. What can be learned from these experiments?
8. Explain the basic idea behind photoelectron diffraction. How can this phenomenon

be used for surface structure determination.
9. Explain the working principle of a scanning tunnelling microscope (STM), espe-

cially how imaging in the constant current mode works.
10. How does the tunnelling current in STM depend on the tip-sample distance and

why?
11. What is the physical interpretation of a constant current mode STM image mea-

sured with a very small bias voltage?
12. Explain the working principle of an atomic force microscope (AFM).
13. Discuss the differences between STM and AFM and the samples these techniques

can be used on.
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Problems

1. LEED: Fig. 7.13 shows the energy dependence of the (0,0) spot of Ni(100). In
practice this means that you have to measure the normal incidence reflectivity of
the crystal for electrons. How would you do this? (This is a tricky question, if you
lack the right idea for an answer, simply ignore this and go on). The finite width
of the LEED I/V peaks is caused by two effects: (1) Electron waves that fulfil the
Bragg-condition in a perfect crystal will eventually get totally reflected (therefore
band gaps open at the Brillouin zone boundary when a potential is present). This
leads to a limited number of scatterers producing the I/V peaks and therefore to
a finite width of the peak. (2) The limited mean free path of the electrons in the
sample also leads to a finite width of the peaks. Make a very simple estimate of
the penetration depth of the electrons from the peak width. Hint: calculate the
∆k corresponding to the peak width ∆E and use the uncertainty principle.

2. LEED: The measurement and analysis of the (-2,1), (0,-2) and (0,2) beams if Fig.
7.17 starts at a rather high energy. Why? Hint: Consider that the measurement
is practically done by tracking the spots on the LEED screen.

3. LEED: Draw a possible structural model and the LEED pattern for
• Cu(001)(

√
2×
√

2)R45◦-O
• Cu(001)(

√
2× 2

√
2)R45◦-O

• Cu(111)(
√

3×
√

3)R30◦-O
For the first two structures, are there notations that avoid the roots?

4. Surface reconstructions: Show that a(
22 0
−1 2

)
(7.31)

reconstruction on Au(111) does in fact give rise to a rectangular unit cell as shown
in Fig. 7.42(b).

5. Surface overlayers: (a) Discuss in general how the relative strength of adsorbate-
adsorbate and adsorbate-substrate interactions can be expected to determine if an
adsorbate overlayer is simply related, rationally related or incommensurate with
the substrate. (b) Discuss the specific example of graphene on transition metal
surfaces.

6. STM: Assuming a small tunnelling voltage and the validity of the Tersoff and
Hamann model for the interpretation of STM images taken in the constant current
mode, we have argued that the Cl atoms on jellium would not be detectable by
STM (see Fig. 6.7). Speculate how the appearance of the Cl atoms might change
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as you increase the tunnelling voltage, going either to positive or to negative bias
voltages.

7. STM: The oxygen-induced rows of the reconstruction appear to be well-resolved
in the STM images of Fig. 7.45 but the step edges on the surface are quite fuzzy.
Give a plausible explanation for this.

8. STM: Some adsorbates can be seen by STM experiments at low temperatures
but not at higher temperatures, even though other techniques (name a possible
technique) clearly indicate that the adsorbates are neither desorbed or dissolved
in the bulk. Discuss how this can be possible.

9. Surface structure determination: Compare the different techniques for surface
structure determination presented in this Chapter, comparing their restrictions
and advantages.
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Figure 8.16: Surface state dispersion on Cu(111). (a) Projected bulk band structure of
Cu(111) (hatched blue area) with the surface state dispersion in red. (b) ARPES spectra
taken at different emission angles close to the surface normal direction. (c) Grey-scale
image of the same data.

parabolas shifted against each other along k‖ [55], such that their crossing point at
k‖ = 0 is no more the point with the highest binding energy. It is tempting to believe
that the splitting between the bands is somehow related to the complex herringbone
reconstruction on Au(111) (see Fig. 7.42) that is absent for Cu(111). However, the
effect of the reconstruction on the surface state dispersion is only very small and the
splitting is caused by an altogether different effect, the spin-orbit interaction, that is
much stronger in heavy metal gold than in copper. Indeed, using higher resolution still
a much smaller spitting of the same kind can also be observed for the Cu(111) surface
state [56].
The spin-orbit interaction is a relativistic effect known from the splitting of core levels
in atoms with l 6= 0. For deep core levels in heavy atoms, where the electron speed
near the nucleus can approach the speed of light, the splitting can be quite strong and
we have seen that a splitting of several electron volts is observed, even for the shallow
core levels of the heavy element bismuth (Fig. 5.9). For valence electrons one would
expect the splitting to be smaller but here it is still observable. In the special case of
a two-dimensional electron system, such as a surface state, a spin-orbit splitting can be
caused by an electric field perpendicular to the plane the electrons move in. We know
that there is such a field near the surface of a metal because of the quite general effect
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of an electron spill-out discussed in connection with Fig. 2.10. For a free electron-like
two-dimensional state in the presence of such an electric field, the modification of the
dispersion due to spin-orbit splitting has been predicted by Rashba to be

E(k) =
~2k2

2me

± α~k. (8.20)

The first term is the kinetic energy of the free electron and the second term is the
correction due to the spin-orbit interaction. The ± sign stands for the two different
spin directions of the electrons and α is a scaling parameter that, among other things,
includes the strength of the electric field perpendicular to the plane of the surface.
Fig. 8.17(b) and (c) show this resulting dispersion for free electrons without spin-orbit
interaction (α = 0) and a finite α, respectively. We see that a finite α splits the band
into two branches with binding energy maxima moved away from k = 0, as expected by
re-writing (8.20) as

E(k) =
~2

2me

(
k ± αme

~2

)2

− α2me

2~2
, (8.21)

and in perfect agreement with the data from the Au(111) surface state. It is interesting
to note that the splitting lifts the spin-degeneracy of the state. Whereas a “normal”
band in a solid can accommodate two electrons per k value, one for each spin direction,
this degeneracy has been lifted in the Rashba model, except for the band crossing at
k = 0. The states are spin-split and the direction of the spin is indicated by arrows in
Fig. 8.17(c).
It is easy to come to a qualitative understanding of the Rashba-type spin-orbit splitting.
Suppose that an electron moves in the plane of the surface and that the electric field is
perpendicular to the surface. The electron experiences the Lorentz-transformed electric
field as a magnetic field that is also lying in the surface but perpendicular to the k vector
of the electron. Now the electron’s energy depends on the orientation of its spin with
respect to this magnetic field (parallel or anti-parallel) and this causes the splitting. The
splitting increases with the magnitude of k because the kinetic energy does.
While the Shockley states appear in the nearly free electron model, one can also approach
the question of surface states from the opposite viewpoint, namely in a tight-binding
picture. There the atomic orbitals that stick into the vacuum because the atoms’
neighbours have been cut off, have very different electronic properties than the equivalent
bulk orbitals and represent surface localised states. This kind of more localised surface
state is called a Tamm state. Examples of Tamm states can also be found on metals.
One is a surface state which is derived from the Cu(001) d-band and shown in Fig.
8.18.

224



0
k

en
er

gy

0
k

en
er

gy

k (Å-1)

500

400

300

200

100

0

bi
nd

in
g 

en
er

gy
 (

m
eV

)

0.0 0.1 0.2-0.2 -0.1

(b) (c)(a)

Figure 8.17: (a) Measured surface state dispersion on Au(111) (photoemission intensity)
from Ref. [57]. (b) Free electron dispersion (Rashba model with α = 0). (c) Rashba model
with α 6= 0. The spin-degeneracy is lifted and the spin direction is indicated by the arrows
pointing into and out of the plane of the paper.

In the end of the day, the distinction between Shockley states and Tamm states is, of
course, somewhat artificial, as it does not make any difference which simple model is
used to explain the existence of surface states.

Adsorbate-covered metal surfaces

Angle resolved photoemission can also be used to probe the modification to the surface
electronic structure that is induced by adsorption. Adsorption can modify the existing
surface states. Alkali atom adsorption, for example, can lead to a “filling” of the existing
surface states on the noble metals, increasing the occupied band width, consistent with
the picture of electron donation by alkali atoms to the surface shown in Figs. 6.7 and
6.8. When adsorbing atoms or molecules on the surface, their orbitals can also give
rise to additional surface-localised features in the electronic structure. We give three
examples here.
Fig. 8.19 shows two spectra taken from CO adsorbed on Ni(001). Both are taken
in normal emission but the direction of the incoming light and hence the polarisation
vector is different. The spectra show peaks that are not present for the clean surface
and thus assigned to the molecular orbitals of CO. A comparison with the energy of the
peaks from gas phase CO leads to an identification of the higher binding energy peak as
stemming from the 4σ orbital and the lower binding energy peak from both the 1π and
5σ orbitals. When the polarisation vector is parallel to the surface, the 4σ peak is not
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then cosh kia > 1 and we get a new solution as indicated by the red curve on the top
of the optical branch in Fig. 9.1. This means that we can have new surface-localised
solutions above the continuum of bulk states.
The other possibility for a real cos(kra + ikia) appears at the Brillouin zone boundary
(kr = π/a) because there sin kra = 0. Now (9.1) is reduced to

ω2 = γM−1
R ± γ

[
M−2

R −
2

M1M2

(1 + cosh kia)

]1/2

, (9.4)

i.e. like (9.3) but with a changed sign in front of the cosh. If we choose ki = 0 we get
two different solutions corresponding to the highest frequency of the acoustic branch
and the lowest frequency of the optical branch. If we choose ki > 0, we get two real
solutions following the red curve at the Brillouin zone boundary in Fig. 9.1. Because
of the sign change in (9.4), there is now an upper limit for ki that is given by the
requirement to have a positive argument in the square root. The two solutions converge
to one at the point where the square root is zero.

kr

ki

 a

ki(max)

2γ

M 1

2γ

M 2

2γ

M R

projected

bulk 

bands

Figure 9.1: Phonon dispersion of a one-dimensional chain with two atoms per unit cell
(blue). Chain-end localised solutions (red) are possible in the projected bulk band gaps at
the Brillouin zone boundary and above the bulk continuum at the zone centre.

The simple model is thus giving us surface-localised vibrations in the projected bulk band
gaps, as we have found in the case of the electronic surface states. The extension to
two-dimensional surfaces is straight forward: As in the case of the electronic states, a
necessary (but not sufficient) condition for the existence of a surface vibrational mode
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is that this mode is placed in a projected band gap of the bulk vibrational spectrum.
We illustrate this by an example. This time, we use the (0001) surface of the hcp metal
beryllium. Fig. 9.2 shows the bulk phonon dispersion of beryllium, the bulk Brillouin zone
and its projection onto the close-packed (0001) direction, giving the surface Brillouin
zone. This projection is much simpler than any of those we had seen for the fcc Brillouin
zone.
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Figure 9.2: (a) Bulk Phonon dispersion of beryllium after Ref. [70]. (b) Bulk Brillouin
zone (BZ) of beryllium (hcp structure) and surface Brillouin zone of Be(0001) obtained by
projection.

Fig. 9.3 shows the projected bulk phonon dispersion for Be(0001) together with the
surface phonon modes, calculated and measured. We can understand the projection
of the bulk phonon structure from the dispersion in Fig. 9.2. Consider for example
the Γ̄ point, i.e. k‖ = (0, 0). This corresponds to the bulk Γ − A direction and an
inspection of the dispersion in Fig. 9.2(a) shows that there is no projected band gap in
this direction. In fact, since the acoustic mode of any material starts at Γ and ω = 0,
the bulk phonon continuum at a surface Γ̄ will always start at zero. For the M̄ point
at the surface Brillouin boundary, we would have to consult the M −L line. While this
line is not given in the calculation of 9.2(a), both the M and the L points are present
and the acoustic branches have reached an energy of more than 50 meV at both points.
It is therefore fair to assume that there are no modes with a significantly lower energy
along the M −L line and that there is thus a large projected band gap for low energies.
This is indeed found in the projected phonon bands of 9.3. In fact, “guessing” where
the projected band gaps are is a lot easier for phonon bands than for electron bands
because similar gaps at low energies are always likely to be found along lines connecting
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points at the Brillouin zone boundary.
Fig. 9.3 also shows the dispersion of surface-localised vibrational modes. The filled
red dots are calculated surface modes using the same force constants that give a good
description of the bulk phonon dispersion and the open red symbols are the measured
surface vibrational frequencies using electron energy loss spectroscopy, a technique we
shall describe later. Clearly the agreement is not particularly good. The force-constants
at the surface must be different from the bulk values.
A characteristic surface vibration is the lowest-lying acoustic mode that is split off the
bulk continuum and most clearly visible at the surface Brillouin zone boundary near
M̄ and K̄. This surface acoustic mode is called the Rayleigh wave, as it has first
been predicted by Lord Rayleigh in 1885. It is found on many surfaces, including the
surface of the earth where it plays an important role in the propagation of earthquakes.
Interestingly, we see that the slope of the Rayleigh mode dispersion close to Γ̄ is smaller
than for any of the other projected acoustic modes. Also the highest energy of the
Rayleigh mode is smaller than the lower edge of energies from the bulk vibrations. This
is consistent with the simple picture of softer force constants, lower vibrational energies
and a lower Debye temperature at the surface due to the missing neighbour atoms.
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Figure 9.3: Bulk phonon dispersion of Be, projected onto the (0001) surface (blue dots).
Calculated surface phonon dispersion for Be(0001), calculated from the bulk force constants
(filled red markers) together with a measurement (open markers). After Ref. [71].
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these curves is clear for a high kx: The lower curve corresponds to the surface plasmon
and the higher curve corresponds to light. At small kx, however, it is no longer possible
to make a clear distinction between light and the surface plasmon.
It is important to keep in mind that the kx scale of this sketch is very small, much
smaller than the typical size of the surface Brillouin zone. In fact, this is already clear
because the Figure shows the light dispersion ω = ckx clearly, in contrast to the graphs
for the entire Brillouin zone, where this dispersion virtually coincides with the vertical
axis of the graph.
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Figure 10.3: (a) Dispersion of a surface plasmon polariton. (b) Coupling the surface
plasmon polariton to light be introducing a periodic structure on the surface.

As a consequence of the dispersion, it is impossible to excite surface plasmons with light
because energy and momentum cannot be conserved simultaneously. This is easily seen
from Fig. 10.3(a). The light dispersion line can be changed via the angle of incidence.
For normal incidence kx = 0 and the dispersion is a vertical line in the Figure. For grazing
incidence kz ≈ 0 the dispersion is ω = ckx. For any angle in between, ω = c(k2

x+k2
z)

1/2.
These curves are shown in Fig. 10.3(a) and it is evident that they never cross the surface
plasmon polariton dispersion. The absence of a crossing implies that we cannot excite
the plasmon by a photon while conserving both energy and momentum. Such a process
would involve the annihilation of a photon with (~ω, k) and the creation of a surface
plasmon with the same (~ω, k), i.e. it would be possible only if the two dispersion curves
cross.
Exciting surface plasmons with light is very desirable. It would strongly couple the
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light field to the surface and could therefore increase the surface-sensitivity of optical
techniques. Surface plasmons are also confined to the surface, so if they could be
launched with a light pulse, they could then propagate in a specially designed device.
Indeed, for applications like this it would be an advantage that they cannot easily decay
by light emission either. All this is possible, but the excitation is not straight-forward,
as we have seen. There are essentially two ways of circumventing the lack of a crossing
between the light dispersion line and the surface plasmon polariton. The first way to
achieve a coupling is to use “slow” photons by using an imaginary kz value. Then the
dispersion line can be moved down, as indicated by the dashed line in Fig. 10.3(a). Such
light can be produced by a total reflection inside a prism mounted at a short distance
above the surface. In this case, an evanescent electric field penetrates the gap between
prism and surface. The field decays exponentially, i.e. it possesses an imaginary k in the
z direction.
Alternatively, one can fabricate a periodic structure on the surface, e.g. a grating
or a regular array of holes. Suppose that this structure has the periodicity a, then its
reciprocal unit cell has the periodicity 2π/a. In such a periodic structure, k is only defined
plus or minus a reciprocal lattice vector and the surface plasmon polariton branch starts
not only at k = 0 but at every reciprocal lattice point. Now other branches cross the
light dispersion lines, as sketched in Fig. 10.3(b). Since the k-scale for the dispersion
is very small, so must be the reciprocal length 2π/a. This is easy to achieve, since
it means that the lattice constant of the artificial structure has to be fairly large (see
Problem 1). The same effect can be created, to some degree, by a rough surface that
can be viewed as a superposition of many gratings with different periodicities.

10.3 Reflection Anisotropy Spectroscopy (RAS)

The technique of Reflection Anisotropy Spectroscopy (RAS) allows surface-sensitive
optical spectroscopy despite the large penetration depth of light. This surface sensitivity
is achieved by the following symmetry-based trick: The optical response of a solid is
dictated by its complex dielectric tensor ε or by the complex refraction tensor N . In the
case of crystals with an inversion centre, such as a cubic crystal, the tensor is reduced
to a complex scalar and we have only addressed this situation so far. Consequently
the normal-incidence reflectivity of a cubic crystal should not depend on the azimuthal
orientation of the polarisation vector. This is only true, however, for the dielectric
response of the bulk crystal; at the surface the inversion symmetry is broken. Any
azimuthal anisotropy in the normal-incidence reflectivity of cubic crystals must therefore
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have its origin in the surface region.
In a RAS experiment (see Fig. 10.4) one probes the difference in the (almost) normal-
incidence reflectivity along two mutually perpendicular orientations of the polarisation
vector. Usually one or both of these directions coincide with the principal crystallographic
directions in the surface. In Fig. 10.4, the incoming beam is linearly polarised and the
polarisation vector lies between two high-symmetry directions on the surface. Here an
fcc(110) surface is used and the directions are [001] and [11̄0], i.e. perpendicular and
parallel to the closed-packed rows, respectively. If the surface reflectance is different
along these directions, the polarisation for the reflected light is rotated, and this is
analysed. Technically, this could be done by a single rotating polariser but here it is
done in combination with a photoelastic modulator.

polarizerpolarizer

photoelastic
modulator

sample

[001]
[110]

Figure 10.4: Setup for a RAS experiment. The difference in reflectance along two mutually
perpendicular directions is measured. After Ref. [82].

This technique is of course rather restricted: the only possible measuring geometry
is normal incidence, the bulk crystal has to have inversion symmetry and the surface
must be chosen such that it has two mutually perpendicular directions that are not
symmetry-equivalent (i.e. fcc(110) works but fcc(001) does not).
One example for the usefulness of RAS is the study of surface states on metal surfaces.
Fig. 10.5 shows the electronic structure in the vicinity of the Ȳ point of the surface
Brillouin zone on Ag(110). Two surface states are found in the projected band gap.
One state above and one state below the Fermi level. Fig. 10.6 shows ARPES and RAS
spectra for the clean and oxygen-covered Ag(110) surface. The ARPES spectrum taken
at the Ȳ point shows the surface state right below the Fermi level. Upon oxygen ad-
sorption, this surface state is quenched and a strong oxygen-induced peak is observable
at a binding energy of ≈1.6 eV. In the RAS spectrum of the clean surface, a pronounced
peak is visible at a photon energy of ≈1.7 eV. This energy corresponds to an interband
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