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Preface

The scope of this book is to give an introduction into the physics of solid, crystalline surfaces
as well as an overview over the experimental techniques used to study such surfaces. Theo-
retical concepts are only briefly introduced when they are needed. The main focus lies on the
phenomena and their experimental investigation. The text covers only a fraction of the field
and the choice is rather subjective. The most important physical phenomena and experimental
techniques should be covered, however.
There are many other general books on surface physics. Here are some that can serve for
further reading:
• Modern Techniques of Surface Science by T. A. Delchar, and D. P. Woodruff, Cambridge

Solid State Science Series, 1994.
• Physics at Surfaces by A. Zangwill, Cambridge Univ. Press, 1988.
• Solid Surfaces, Interfaces and Thin Films by H. Lüth, Springer, 2010.
• Concepts in Surface Physics by M. C. Desjonqueres, D. Spanjaard, Springer, 2012.
• Physics of Surface and Interfaces by H. Ibach, Springer, 2006.

A more specific list for further reading is given in the end of each Chapter and some references
are given in the text. Note, however, that this is a textbook and not a review article and
the references are merely intended to help you with finding a more in-depth discussion of the
subjects.
Each Chapter ends with a list of discussion questions you can use to test your understanding
of the text and with a few problems to further deepen your understanding of the concepts
introduced. The problems marked by (*) are more difficult and meant as a challenge.
This book is self-published as an ebook and both of these concepts are new to me. My hope
is that this new approach of publishing will provide the student with a useful text at at more
affordable price than the usual textbooks, while at the same time ensuring that the costs
for the technical realisation, ISBN numbers, distribution and so are covered. An important
issue for this approach to publishing is quality control, something that can only be ensured
through testing. I am therefore very grateful to my colleagues Jeppe Vang Lauritsen at Aarhus
University and Christoph Tegenkamp at the University of Hannover, as well as their students,
for using a previous version of the book in their courses and for providing valuable feedback
and corrections.
I gratefully acknowledge the help from my colleagues David Adams and Flemming Besen-
bacher who I initially joined in teaching the surface science course at Aarhus University. I
have used several electronic pictures from David here. Many of the other images have been
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made by Erik Holst Mortensen. Over the years, many other colleagues have contributed with
valuable suggestions, discussions, examples and figures to the development of this text. I
specifically acknowledge the input from Alessandro Baraldi, Silvano Lizzit, Justin Wells, Ivan
Stensgaard, Erik Lægsgaard, Lars Petersen, Anders Tuxen, Georg Enevoldsen, Jeppe Lauritsen,
Liv Hornekær, Søren Ulstrup, Marco Bianchi, Meike Stöhr, Philip King, Karsten Pohl, Wolf-
gang Theis, Federico Rosei, Carsten Busse and Anton Tamtögl. I also thank the many students
who have followed the surface science course and contributed with corrections and sugges-
tions. Finally, I would like to thank my PhD and postdoctoral supervisors Alex Bradshaw, Phil
Woodruff and Ward Plummer who introduced me to the subject of surface physics.
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Chapter 1

Introduction

This book gives a brief introduction into the physics of solid surfaces their experimental study.
Surfaces and interfaces are everywhere and many surface-related phenomena are common in
daily life (texture, friction, surface-tension, corrosion, heterogeneous catalysis). Here we are
concerned with understanding the microscopic properties of surfaces, asking questions like:
what is the atomic structure of the surface compared to that of the bulk? What happens to
the electronic properties and vibrational properties upon creating a surface? What happens
in detail when we adsorb an atom or a molecule on a surface? In some cases, establishing
a connection to the macroscopic surface phenomena is possible. In others, the microscopic
origin of these phenomena is not understood in detail. We will mostly concentrate on simple
model systems like the clean and defect-free surface of a single-crystal substrate. Such things
do of course only exist in our imagination but the technological progress in the last 50 years
has made it possible for model experiments to get quite close to this ideal. This together with
the progress in surface science theory makes it meaningful to compare experimental results to
quantitative calculations.
One of the most important motivations in surface science is the understanding of heterogeneous
catalysis. The fact that the presence of a solid could accelerate a chemical reaction without
modifying the solid was first discovered in the early 19th century. Knowledge about catalysis
has then rapidly grown and been the basis of the developing chemical industry. In the beginning,
the microscopic mechanism of the catalytic process was, of course, unknown. Much was tried
and “good” catalysts were made from experience. A typical surface science experiment on
an “ideal” single crystal surface in ultra-high vacuum is rather far away from the conditions
a real catalyst is working in: the catalyst may be made of small metal particles dispersed
on an inert substrate in a high gas pressure and at elevated temperature. Nevertheless, the
surface science approach can give important information about many fundamental processes
in catalysis. But there are of course situations where this is not enough. Therefore one tries
to move into a direction where one is closer to the real catalyst but still very controlled. One
can, for example, study the catalytic properties of well-defined metal clusters on a well-defined
surface. The ultimate goal is of course to really understand the catalytic reaction in all steps
and to improve the catalyst (make it cheaper or more efficient). Closely related to this is the
issue of corrosion. Questions are: What are the chemical reactions leading to corrosion? How
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do they take place on the surface and what can we do to prevent them?
Another reason for the strong interest in surfaces is related to the semiconductor industry.
There is a need to build ever smaller structures in order to achieve higher integration on com-
puter chips. One consequence of small structures is that the relative importance of the surfaces
is increasing. Another, more practical, consequence is the need to build these structures with
high precision and to have flat interfaces between them. This is also an issue in the growth of
thin and ultra-thin films and multilayers needed for semiconductors, magnetic storage, coat-
ings and so on. Surface Science research on semiconductor surfaces is much closer to the real
technological world than the research in heterogeneous catalysis. Most semiconductor devices
are build starting from single-crystal silicon wafer. Related to the increased importance of sur-
faces in connection to smaller semiconductor structures is the field of nano technology. The
electronic properties of nano structures are governed by quantum-confinement effects and the
surface sets up the boundary conditions. In some cases, it is even such that surface-localised
electronic states dominate the electronic properties of a nano object.
A more fundamental issue is that surfaces and interfaces provide a unique opportunity to
study (nearly) two-dimensional electronic systems. The most famous examples for this is
quantum Hall effect where a two-dimensional electron gas is generated in a semiconductor
heterostructure. Such a two-dimensional electron gas can also be created near a surface and
studied with a range of powerful surface science techniques. Another opportunity to study
electronic phenomena in (nearly) two dimensions are surface-localised electronic states that
exist on many pristine surfaces.
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Chapter 2

From Solids to Surfaces

2.1 Introduction

In the present Chapter, we briefly review the basic ideas of solid state physics and establish a
link to our actual subject, the physics of solid surfaces. It is assumed that you have already
followed a basic course on solid state physics. Hence, any detailed treatment is omitted and
we merely focus on some “highlights”.
When trying to learn something about solids, the biggest problem one encounters is that
a macroscopic solid contains very many (1023) atoms. It is therefore impossible to solve
any equations of motion, classical or quantum, in a direct way. The key for a quantitative
description of the electronic and vibrational properties of solids is the fact that most solids
are crystals and the crystal symmetry can be exploited to greatly facilitate the solution of
the problem. This Chapter thus reminds you about the description of crystals in real and
reciprocal space and it explains some basic ideas relating the surface properties to those of the
bulk.
We divide the properties of a solid into electronic contributions and lattice vibrations. This
division is not without problems: In principle one would have to solve the Schrödinger equation
for the whole system, with the co-ordinates of all the electrons and all the ions. The reason
why separating the electronic and vibrational degrees of freedom works well, is that the ions are
so much heavier and slower than the electrons. When the ions move out of their equilibrium-
position the electrons follow quickly but they stay in their ground state. They just move to
another ground-state with higher energy. When the ions are moving back, the electrons follow
to their initial ground state. The good approximation that the electrons remain in their ground
state is called adiabatic or Born-Oppenheimer approximation.
The mass difference is also reflected in the different energy scales in electron and ion motion:
typical kinetic energies of electrons are in the region of several eV while the vibrational (phonon)
energies are several meV. The strategy to follow is therefore to solve the electronic structure
assuming a rigid crystal. Then the vibrational properties can be calculated from the known
electronic properties. Finally, the influence of the vibrational states on the electronic system
can be considered: it is usually just a very small (but potentially important!) change.
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(a) (b)

(c) (d)

Figure 2.1: (a) The body-centred cubic (bcc) and (b) the face-centred cubic (fcc) Bravais lattice.
The vectors spanning the lattices are given as arrows. (c), (d) The Wigner-Seitz cells for the fcc
and bcc lattice, respectively.

2.2 Lattice and reciprocal lattice

2.2.1 Lattice

Many solids exist in a crystalline form. Not only the ones that appear as large single crystals in
nature (like diamond, many minerals and salts) but also metals grow as crystals, with bigger
chunks of material often made from small crystallites with different orientations. Since these
crystallites are still much bigger than the atomic spacings, we can view the solids as ideal
crystals and use the perfect periodicity to facilitate many of the problems.
We start with some basic definitions. The most fundamental is that of a Bravais lattice. It is
defined as a lattice of points with position vectors

R = n1a1 + n2a2 + n3a3. (2.1)

Examples for a Bravais lattice are the body centred cubic (bcc) lattice and the face centred
cubic (fcc) lattice shown in Fig. 2.1.
Given the Bravais lattice, the primitive unit cell can be defined: it is any volume of space
that, when translated through all the vectors of the Bravais lattice, fills all of space without
either overlaps or voids. There are many possible choices for this primitive unit cell. One very
common is the Wigner-Seitz cell. This cell has the full symmetry of the lattice and is defined
as the region of points closer to a given lattice point than to any other lattice point. The
Wigner-Seitz cells of the bcc and fcc lattice are also given in Fig. 2.1.
Finally, a real crystal can be described by a Bravais lattice and a so-called basis. The basis is
a fixed arrangement of atoms or molecules that is placed on every point of the Bravais lattice.
It can just be one atom or it can be a whole protein in crystals used for protein structure
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determination by x-ray diffraction.
The basis for the fcc and bcc lattices is just one atom but in order to see this, one has to realise
that the cube is not the primitive unit cell. The Bravais lattice vectors actually spanning the
primitive unit cells are indicated in Fig. 2.1(a) and (b).

2.2.2 Reciprocal lattice

Starting from the Bravais lattice, the reciprocal lattice can be defined as the set of vectors
G that yield plane waves with the periodicity of the Bravais lattice. This means that if G
belongs to the reciprocal lattice of a Bravais lattice with points R then the relation

eiG·(r+R) = eiG·r (2.2)

or
eiG·R = 1 (2.3)

must hold.
The reciprocal lattice vectors also form a Bravais lattice

G = n1b1 + n2b2 + n3b3. (2.4)

and the vectors b1,b2,b3 spanning this lattice can be constructed explicitly by

b1 = 2π
a2 × a3

a1 · (a2 × a3)
b2 = 2π

a3 × a1

a1 · (a2 × a3)
b3 = 2π

a1 × a2

a1 · (a2 × a3)
(2.5)

From this, it is easy to derive the very useful relation.

ai · bj = 2πδij. (2.6)

For the examples in Fig. 2.1, one finds that the reciprocal lattice of the fcc Bravais lattice is
the bcc lattice and for the bcc Bravais lattice, it is the fcc lattice.
The concept of the reciprocal lattice allows us to re-write many solid state problems in a
much simpler way by making use of the crystal symmetry. Take for example a one-dimensional
lattice with lattice spacing a. A periodic function on this lattice, such as the charge density,
fulfils

ρ(x) = ρ(x+ na), (2.7)

with n being an integer number. ρ can be written in a Fourier series

ρ(x) =
∑

n ρne
i(n2π/a)x, (2.8)

where 2π/a is the distance between the points of the one-dimensional reciprocal lattice. For
the analogous three-dimensional charge density

ρ(r) = ρ(r + R), (2.9)
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the same construction can be made with the sum taken over the reciprocal lattice vectors
G

ρ(r) =
∑

G ρGe
iG·r. (2.10)

At first glance, the advantage of writing down this series may not be obvious: In real space
we have to describe ρ for every point in the unit cell and there are, in principle, infinitely many
points, but in reciprocal space we also have an infinite series. However, it turns out that it is
often sufficient to use very few Fourier coefficients to get an accurate description of ρ.
It is also possible to define a primitive unit cell in the reciprocal lattice. Of special importance
in the theory of electronic and vibrational states is the Wigner-Seitz cell in the reciprocal
lattice. It is called the first Brillouin zone. The first Brillouin zones for the bcc and fcc lattice
look like the Wigner-Seitz cells for the fcc and bcc lattice in Fig. 2.1, respectively.
Another point worth mentioning in connection with our actual subject, the physics of surfaces,
is the definition of the Miller indices. These are used to define a lattice plane or the orientation
of a surface plane. A plane can be conveniently defined by a vector perpendicular to the plane
and the Miller indices use the reciprocal lattice vectors to do this: the lattice plane with the
Miller indices (h, k, l) is the plane perpendicular to the reciprocal lattice vector hb1+kb2+lb3.
In a simple cubic lattice, the reciprocal lattice is also simple cubic and the bi vectors have
the same direction as the ai vectors. Thus, the (h, k, l) plane is not only perpendicular to the
hb1 + kb2 + lb3 vector but also to the ha1 + ka2 + la3 vector and the construction is trivial
(see Fig. 2.2).
For the definition of lattice planes, the bcc and fcc lattice are usually treated as simple cubic
but we need to be aware of the possible confusion arising from this. For non-cubic materials it
is very important to remember the actual definition of the Miller indices: they give a direction
in reciprocal space, not in real space.

(1,0,0)

a1

a3

a2

(1,1,0)

a1

a3

a2

(1,1,1)

a1

a3

a2

Figure 2.2: Three lattice planes and their Miller indices in the simple cubic lattice.

2.2.3 Directions in real and reciprocal space

There are some conventions for specifying surface orientations and directions on surfaces that
are worth summarising here. Surface orientations are generally given by the Miller indices
(h, k, l), as illustrated in 2.2 for the simple cubic lattice. Often, the commas in the Miller
indices are omitted and one writes (hkl). If the surface direction needs to be specified with
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a negative index, it can be written as e.g. (h− kl) but often the minus sign is replaced by a
bar as in (hk̄l). While the Miller indices in round brackets (hkl) denote a specific direction
in reciprocal space and the surface perpendicular to this direction, indices in curly brackets
{hkl} denote a family of symmetry-equivalent directions or planes. In a cubic crystal, {100}
could be used in order to refer to the equivalent (100), (010), (001), (001̄), (01̄0) and (1̄00)
planes.
Similar conventions apply for directions in real space. Square brackets are used to give specific
directions. For example [lmn] corresponds to the real space direction la1 +ma2 +na3. Again,
a bar above a number means minus. Angle brackets are used to denote equivalent directions
in real space. As an example, the [001], [010], [100], [001̄], [01̄0] and [1̄00] directions could be
summarised as the 〈001〉 direction.
Finally, it is useful to know that Miller indices for hexagonal structures are often given with four
numbers instead of three, i. e. (hkil). In this notations, the last index l refers to the direction
of the hexagonal c axis and the additional index i can be calculated by i = −(h+ k).

2.2.4 Lattice and reciprocal lattice at surfaces

Now we discuss how to apply the concepts of the Bravais lattice, the basis and the reciprocal
lattice to a solid’s surface. Cleaving a bulk crystal results in two semi-infinite half-crystals,
each terminated by a surface. This affects the global symmetry of the system: parallel to
the surface, crystalline translational symmetry is conserved but perpendicular to the surface,
it is broken, at least at the actual surface position. The surface as such could be viewed as a
perfectly periodic two-dimensional system but very often the three-dimensional character of the
bulk under the surface cannot be ignored and the system is effectively between two-dimensional
and three-dimensional. We will see several examples of this.
When the surface is formed, one could assume that all the atoms stay at the same positions as
before in the bulk. This is actually often not the case but we assume it for now. For the newly
formed surface, we now define a two-dimensional Bravais lattice and illustrate this using the
example of the fcc(001) surface, i.e. the termination of an fcc crystal with a plane of Miller
indices (001). Fig. 2.3 shows how this surface is related to the bulk fcc crystal structure as
well as an atomistic model for the surface. It is simple to suggest a two-dimensional Bravais
lattice for the surface: It consists for the vectors a′1 and a′2. These are perpendicular to each
other and have the length a/

√
2, with a being the side length of the bulk cube.

We can also construct the surface Bravais lattice starting from the bulk Bravais lattice. The
bulk Bravais lattice is given by

a1 =
a

2

 0
1
1

 , a2 =
a

2

 1
0
1

 , a3 =
a

2

 1
1
0

 , (2.11)

and we are seeking two non-collinear vectors in the surface plane. These can be constructed
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x
y

z

a1
a2

a3

a’1

a’2

(a) (b)

Figure 2.3: The fcc(001) surface. (a) The surface (shaded) in relation to the bulk structure and
the vectors spanning the bulk Bravais lattice. Not all the lattice points on the faces of the cube
are shown. (b) Top-view of the surface showing the surface Bravais lattice vectors. The purple
square corresponds to the top of the cube in (a).

by

a′1 = a3 =
a

2

 1
1
0

 , a′2 = a1 − a2 =
a

2

 −1
1
0

 , (2.12)

i. e. we get the same result as from our naive guess, two vectors that are perpendicular to
each other and have the length a/

√
2. It is easily seen that they also have the same directions

as the vectors resulting from our direct construction in Fig. 2.3.
What is the basis for the surface? This question is not so easily answered. If we only view
the first layer of atoms as “the surface”, the definition of the basis is clear enough: Given the
Bravais lattice, it would have to contain sufficiently many atoms that we can describe all the
atoms in the surface layer. In our case, this would be just one atom, of course. If, however,
we are interested in the atoms of deeper layers as well, we could have to include them in the
basis. A pragmatic approach to this would be to define the crystal as a stack of identical units,
possibly made of several atomic layers, with the same basis for each unit.
The construction of the surface reciprocal lattice is illustrated using the same example of
the fcc(001) surface in Fig. 2.4. We can directly construct the vectors spanning the surface
reciprocal lattice b′1 and b′2 from the surface Bravais lattice vectors a′1 and a′2 using (2.6).
We immediately see that b′1 must be perpendicular to a′2 and hence parallel to a′1. Moreover,
b′1 · a′1 = 2π and therefore the length of b′1 must be 2π

√
2/a. b′2 has the same length and

is perpendicular to b′1.
We can also obtain the surface reciprocal lattice from a projection of the bulk reciprocal
lattice onto the surface plane. The bulk reciprocal lattice of the fcc lattice is a bcc lattice, as
illustrated in Fig. 2.4. Explicitly, it is given by

b1 =
2π

a

 −1
1
1

 , b2 =
2π

a

 1
−1
1

 , b3 =
2π

a

 1
1
−1

 , (2.13)
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a’1

a’2
b3

b2b1

(b) (c)(a)

}a/√2

b’1

b’2

}2π√2/a

b1
b2

b3

Figure 2.4: (a) Construction of the surface reciprocal lattice for the fcc(001) surface directly
from the real space Bravais lattice in the plane of the surface. (b) The fcc reciprocal lattice.
The surface plane is the top of the cube and the surface reciprocal lattice can be obtained by
projecting the bulk reciprocal lattice vectors onto this plane. The grey plane is the same as in
Fig. 2.5. (c) The result of this projection, i.e. the cube in (b) viewed from the top.

A normal vector perpendicular to the surface is

n =

 0
0
1

 . (2.14)

Note, that this vector is obviously perpendicular to the surface we are interested in here (it is
directed along the z axis) but this direction is not consistent with the (hkl) reciprocal lattice
vector being perpendicular to the surface. In fact, only the (110) reciprocal lattice vector
would be perpendicular to the surface. The reason is that we have defined our (001) surface
with respect to the cubic unit cell, as one usually does for fcc and bcc surfaces, and not with
respect to the primitive unit cell. This is a convenient convention but one has to keep in mind
that it is applied here!
In order to project the reciprocal lattice out onto the surface, we take each reciprocal lattice
vector and subtract the component of this vector that is perpendicular to the surface. For b1

we get

b1 − b1 · n =
2π

a

 −1
1
1

− 2π

a

 −1
1
1

 ·
 0

0
1

 =
2π

a

 −1
1
0

 (2.15)

and for the two other vectors we get

b2 − b2 · n =
2π

a

 1
−1
0

 , b3 − b3 · n =
2π

a

 1
1
0

 . (2.16)

All of these vectors have the same length as inferred when we directly calculated the surface
reciprocal lattice from the surface Bravais lattice. The first two are pointing in opposite
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directions, perpendicular to the third one. We thus get two independent vectors for the
surface reciprocal lattice.
It is curious that we have to project the bulk reciprocal lattice onto the surface in order to get
the correct surface reciprocal lattice whereas we merely take one plane (and not the projection)
of the real space Bravais lattice in order to obtain the surface Bravais lattice. It is immediately
clear why projecting the real space lattice onto the surface plane is not a good idea: this would
lead to too many Bravais lattice points since it matters in which layer the points are. For the
reciprocal lattice, on the other hand, a projection onto the surface becomes necessary because
the periodicity in the direction perpendicular to the surface is lost and hence the quantum
number k perpendicular to the surface loses its meaning: It does not matter what value k
has in this direction, only the components of the initial k parallel to the surface retain their
meaning.
The necessity for projecting out the reciprocal lattice is illustrated in Fig. 2.5(a). Again, we
see how the b′1 surface reciprocal lattice vector is obtained by the projection of the b3 bulk
reciprocal lattice vector in a cut through reciprocal space. If the value of k perpendicular to
the surface is irrelevant, surface reciprocal space points that differ by b′1 must be completely
equivalent. We can see that this is the case when considering the black dots representing the
bulk reciprocal lattice points. When projecting the lattice of black dots onto the line parallel
with b′1, this vector does indeed connect two dots.

b’1 b’2

Brillouin
zone

surface Brillouin
          zoneb’1

b3

X

X

L

XM

Γ

(a) (b)

X

Γ

Figure 2.5: (a) Two-dimensional cut through the fcc reciprocal lattice in the grey plane of Fig.
2.4(b), showing the reciprocal lattice points and a cut through the bulk Brillouin zones (in green).
The b′1 surface reciprocal lattice vector is obtained by the projection of the b3 onto the surface
and it connects bulk reciprocal lattice points that are projected out onto the surface. (b) Sketch
of the fcc bulk Brillouin zone and the projection on the (001) surface, giving rise to the surface
Brillouin zone for fcc(001).
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Having defined the surface reciprocal lattice, we can go on and define the surface Brillouin
zone. This is the surface analogue to the first Brillouin zone in the bulk and defined in the
same way, merely in two dimensions. For a square lattice, the surface Brillouin zone is also a
square. Figure 2.5(b) shows the surface Brillouin zone for the fcc(001) surface in relation to
the bulk Brillouin zone. Note that the surface Brillouin zone is parallel to the square face of
the bulk Brillouin zone, but it is larger than this square. Why this is so is obvious when we
consider that the surface reciprocal lattice is a projection of the bulk reciprocal lattice. The
edge point of the surface Brillouin zone (the X̄ point) must project down to the centre of the
hexagon on the bulk Brillouin zone (the L point) because this point is at half the distance
between two projected bulk Brillouin zone centre points. This is also evident from the cut in
Fig. 2.5(a).
The high symmetry points of the bulk Brillouin zone are typically denoted by letters such as
Γ for the centre and X,L and so on for points on the faces. For the surface Brillouin zone,
similar notations are used but the two-dimensional high symmetry points carry a bar over the
letter. The centre of the zone, for example, is called Γ in the bulk and Γ̄ on the surface.
For all the above considerations, we have assumed that the atoms near the surface simply
remain at the position they had in the bulk solid when the surface is formed. This does not
have to be so: Imagine the forces on an atom at the new surface. The atom loses some of its
nearest neighbours and an entirely new energetic situation arises. The first layer atoms could
move further away from the remaining neighbours or closer towards them. Such a change of
the first interlayer spacing is a called a relaxation.
Not even the periodicity parallel to the surface needs to remain the same as in the bulk: On
many surfaces, especially on semiconductors, the atoms try to find new “partners” for the
broken bonds sticking into the vacuum. This can lead to a reconstruction of the surface where
the periodicity parallel to the surface is not the same as in the bulk. We will discuss this in
more detail in Section 7.2.
We conclude this section by again illustrating the usefulness of the reciprocal lattice, now
with special emphasis to the two-dimensional surface reciprocal lattice. Figure 2.6(a) shows
a Scanning Tunnelling Microscopy (STM) image of a Pt(111) surface and Fig. 2.6(b) shows
the Fourier transformation of this image. Pt is an fcc metal and the (111) surface is a closed-
packed surface with hexagonal symmetry. At this point, we do not have to worry how an STM
works or what exactly the picture shows. We can merely interpret it at the charge density at
the surface, resolved on an atomic scale. The charge density varies with the periodicity of the
atomic lattice, it is highest where the atoms are and we can interpret Figure 2.6(a) as “an
image of the atoms”. A Fourier transform of the charge density should basically be an image
of (2.10) with the intensity at the reciprocal lattice spots being equal to the (magnitude of
the) Fourier coefficients of the charge density. This is indeed the case. We can see that the
six spots around the origin are by far the most intense features. They alone give already a
decent description of the entire STM image. This makes the usefulness of reciprocal space
obvious. When looking closer, weaker features at other reciprocal lattice points can be seen.
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(a) (b)

Figure 2.6: (a) Scanning tunnelling microscopy image of Pt(111). (b) The Fourier transformation
of this image [1].

2.3 Electronic states

We briefly recapture different approaches to describe the electronic structure of solids. In all of
these it is assumed that the situation can be described by one electron moving in the potential
of the ions and all the other electrons. For metals, the electrons are largely free and the
electronic states can often be well-described by assuming either completely free electrons (i.e.
a vanishing crystal potential) or nearly free electrons. For more covalently bonded materials,
on the other hand, the electrons are still strongly bound to their respective atoms and a simple
description starts from a linear combination of the atomic orbitals. Ultimately, all approaches
lead to a dispersion of the electronic levels in reciprocal space, i. e. to a number of energy
bands En(k), where the index n numbers the bands.
Once we have obtained these bands, they are filled up with the available electrons according
to the Fermi-Dirac distribution

f(E, T ) =
(
e
E−µ
kBT + 1

)−1

, (2.17)

where µ is the (temperature-dependent) chemical potential that, for a metal, is approximately
equal to the (temperature-independent) Fermi energy EF , the highest energy reached when
filling in the electrons at T = 0.

2.3.1 Free electrons

A possible starting point for a quantum mechanical treatment of the solid’s electronic structure
is to consider free electrons in a box. It can be assumed that this is an appropriate model
to describe a metal. We calculate single particle states and neglect the electron-electron
interaction. We can assume a vanishing potential in the box and the Schrödinger equation
is

Hψ(r) = − ~2

2me

∇2ψ(r) = Eψ(r). (2.18)

The solution must have the form

ψ(r) = Aeik·r +Be−ik·r, (2.19)
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where A and B are complex amplitudes. This gives rise to the energy eigenvalues

E(k) =
~2|k|2

2me

=
~2

2me

(k2
x + k2

y + k2
z) (2.20)

The possible values of k are restricted by the choice of boundary conditions. We can, for
example, require that the wave function must vanish at the border of the box, as would be
the case for an infinitely high potential barrier. Then A and B in (2.19) are chosen such that
the wave functions are of the form

ψ(r) ∝ sin kxx sin kyy sin kzz, (2.21)

and the k values are
kx = π

L
nx; nx = 1, 2, 3, . . .

ky = π
L
ny; ny = 1, 2, 3, . . .

kz = π
L
nz; nz = 1, 2, 3, . . . ,

(2.22)

where L is the side length of the box, that is assumed to be a cube.
Alternatively, we can use periodic boundary conditions, i.e.

ψ(r) = ψ(x, y, z) = ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L), (2.23)

with the solutions of (2.18) written as

ψ(r) ∝ eir·k (2.24)

and the permitted k-points are

kx = 2π
L
nx; nx = 0,±1,±2,±3, . . .

ky = 2π
L
ny; ny = 0,±1,±2,±3, . . .

kz = 2π
L
nz; nz = 0,±1,±2,±3, . . . .

(2.25)

This choice of boundary conditions has no effect on the resulting properties. If we, for example,
calculate the density of states, we get exactly the same result. From a surface point of view,
this appears to be a problem because it should make a difference if we force the wave functions
to vanish at the surface or not. We discuss this in some more detail below, but here we just
point out that these boundary conditions are not intended to represent a solid with a surface.
Indeed, their purpose is to give an accurate description of a bulk solid, avoiding the difficulty
of having a surface.

2.3.2 Electrons in a periodic potential: Nearly free electrons

In a real crystal, the potential is not zero or constant. We do not usually know its precise
form but we do know that it has the same periodicity as the lattice. The Schrödinger equation
is

Hψ(r) = (− ~2
2me
∇2 + U(r))ψ(r) = Eψ(r) (2.26)
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where U(r) = U(r+R) is the potential. The solutions of this equation are Bloch waves with
the form

ψk(r) = uk(r)eik·r (2.27)

where uk(r) = uk(r+R) is a lattice periodic function. A general property of the Bloch waves
is that

ψk(r) = ψk+G(r) (2.28)

where G is a reciprocal lattice vector. This means that a Bloch wave does not change when
it is shifted by a reciprocal lattice vector. Inserting this into the Schrödinger equation gives
that also

Ek = Ek+G. (2.29)

Since both the wave-functions and the energies are periodic in reciprocal space it is sufficient
to treat both in the first Brillouin zone.
For a simple approach to the electronic structure of metals, one can assume that the potential
is very weak, i.e. that the electrons are nearly free. The green dashed lines in Fig. 2.7(a)
are the resulting bands for such a potential in a one-dimensional lattice of periodicity a. The
bands are merely parabolas, i.e. the solutions for the free electron case (2.20). However, there
is not only one parabola centred at k = 0, but repeated parabolas with a distance of 2π/a in
order to fulfil the requirement (2.29).
This electronic structure changes in an important way if the potential in (2.26) is not almost
zero but takes on a finite value. The lattice periodic potential is described by the Fourier
series

U(r) =
∑

G UGe
iG·r. (2.30)

If we take a one-dimensional real potential and assume that just the first Fourier coefficient
is non-zero, i.e. U∗1 = U−1, we find that free electron band picture in Fig. 2.7(a) changes,
but only in the immediate vicinity of the Brillouin zone boundaries where gaps appear in the
band structure. The size of the splitting is twice the magnitude of the Fourier coefficient U1

in the potential. If we include more non-zero Fourier coefficients, we get gap openings at
other degeneracy points. A finite U2, for example, removes the degeneracy of the next band
crossing at k = 0. The solid black band structure in Fig. 2.7(a) shows this situation where
both U∗1 = U−1 and U∗2 = U−2 are different from zero.
The opening of band gaps is of fundamental importance for describing the electronic structure
of solids because it gives the possibility to describe not only metals but also semiconductors
and insulators. For surfaces, band gaps are also very important because their presence is a
necessary condition for the existence of new, surface-localised electronic states as we shall see
in Chapter 8.

2.3.3 Electrons in a periodic potential: tightly bound electrons

So far, we have viewed the development of band structure by starting from free electrons
and then introducing a (weak) lattice potential that gives rise to deviations from the free
electron behaviour. It is interesting, and in many cases of high practical value, to adopt a
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Figure 2.7: Electronic band structure for a one-dimensional periodic potential of lattice constant
a. The dashed green lines are the solution for a periodic but vanishingly small potential. The
black lines are the solution for nearly free electrons with non-vanishing Fourier coefficients Ug and
gaps opening around crossings of the dashed bands. The right hand side illustrates how a similar
band structure is arrived at in a tight-binding model, starting from the atomic energy levels E0

and E1. These levels are shifted slightly and broadened into bands of the width nγ and nγ′,
respectively, where n is the number of nearest neighbours and γ, γ′ are determined from the
overlap between the wave functions and atomic potentials at neighbouring sites. The Bloch wave
functions are derived from the atomic orbitals and they are illustrated for the two lowest lying
band (s and p) on the right hand side.

complementary point of view. We can start with the orbitals of the atoms forming the crystal
and construct a crystal wave function as a linear combination of these atomic orbitals. This
method is known as a tight-binding approach. Obviously, the nearly free electron approach
is more natural to describe metals while the tight-binding approach is the obvious starting
point for covalently bonded crystals or for more localised electrons in metals, such as the d
electrons in transition metals. Both are mere approximations but very useful for a qualitative
understanding of electronic structure.
We sketch the tight-binding formalism in its simplest form. We start with the Hamiltonian for
the atoms making up the solid (considering only one kind of atom for simplicity). It is given
by

Hat = −~2∇2

2me

+ Vat(r). (2.31)

where Vat is the atomic potential. Atoms have different energy levels En and we assume that
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Chapter 3

Ultra High Vacuum (UHV)

The key-ingredient to surface science experiments is ultra-high vacuum. This means a pressure
in the 10−9 mbar range and below. Only such a low pressure will ensure that a surface stays
clean for a time long enough to do typical surface science experiments. In the following, the
requirement for UHV and some important parts of UHV technology are described. We also
discuss how to obtain a clean surface in the first place.

3.1 Vacuum requirements

We can quickly estimate the vacuum requirements for surface science. Let us imagine a clean
surface in the vacuum vessel. From kinetic gas theory, we can obtain the number of gas
molecules impinging on the surface as

R =
dN

dt
=

P√
2πMkBT

, (3.1)

where M is the molecular mass. The usual units for the pressure in vacuum technology are
torr or mbar (1 torr = 1.3332 mbar = 133.32 Pascal). For a pressure of 10−6 mbar and
a temperature of 300 K, we find the rates of impinging molecules that are given in Table
3.1.
As an order of magnitude value, a surface has 1015 atoms per square centimetre. This means
that if every rest-gas molecule from the incoming flux sticks to the surface, the latter will only

molecule Mu R(cm−2s−1)
H2 2 1.1x1015

H2O 18 3.6x1014

CO 28 2.9x1014

O2 32 2.7x1014

CO2 44 2.3x1014

Table 3.1: Rate of molecules impinging on a surface in vacuum at a pressure of 10−6 mbar.
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stay clean for a second or so. If we are not willing to tolerate more than, say, one percent of
contaminating rest-gas molecules on the surface an hour after cleaning it, then the pressure
has to be in the UHV region.
It is also interesting to calculate the mean free path λ of the molecules in the gas at a given
pressure, i.e. the mean distance before hitting another molecule. Again, we use kinetic gas
theory and find

λ =
kBT√
2πξ2P

, (3.2)

where ξ is the molecular diameter.
Depending on the ratio of λ and the typical dimensions of the vacuum system d (10 cm),
different flow regimes can be defined when gas passes through the system, e.g. when it is
evacuated by a pump. When λ � d, the flow is called viscous. This is always the case at
ambient pressure. In the opposite limit, when λ � d, the flow is called molecular. This is
the case for typical UHV pressures, where λ is many meters. It means that it is much more
likely that a molecule hits the walls of the vacuum vessel than another molecule and this has
important consequences for pump technology.

3.2 Construction, pumping and bakeout

Before discussing the technical details of an actual vacuum system, we start with some general
considerations and definitions. The objective of vacuum technology is to remove gas from the
recipient. A flow of gas can be defined in terms of the volumetric flow dV/dt or, more usefully,
the flow rate Q as

Q =
d(PV )

dt
. (3.3)

Flow rates are measured in Pa m3s−1 or similar units (one often finds torr for pressure and
litres for volume). Using the ideal gas equation, we obtain

Q =
d(PV )

dt
= kBT

dN

dt
, (3.4)

so this does indeed corresponds to a flow of particles. The flow rate can be used to describe
different situations, such as the flow through a tube connecting vacuum system and pump,
the removal of particles from vacuum system or an incoming flow of particles due to a leak in
the sealing of the system.
The process of evacuating the system can be described as

− dP

dt
= P

S

VC
−Q0, (3.5)

where VC is the volume of the vacuum chamber, Q0 some incoming flow of particles discussed
below and S the pumping speed. S is measured in m3s−1 but for commercially available pumps
it is most frequently quoted in litres per second (ls−1). To see how the pump-down of the
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system proceeds, we first consider the limit of this equation when Q0 is so small that we can
neglect it. In this case, (3.5) is solved by

P (t) = P0 exp(− S

VC
t), (3.6)

where P0 is the starting pressure. Such exponential behaviour is indeed found in the beginning
of the pumping process but unfortunately it does not continue, even in the case of Q0 = 0.
The reason is that the pumping speed of a vacuum pump depends on the pressure. In fact,
apart from the pumping speed, vacuum pumps are also characterised by the lowest achievable
pressure (the pressure where S approaches zero) and in order to achieve UHV, it is usually
necessary to use a combination of pumps with different characteristics, frequently operated in
series.

UHV

recipient
roughing

pump

p<

10-2 mbar

turbo

pump

p<

10-9 mbar

ion

pump

gas

exhaust

(b)(a)

Figure 3.1: (a) Schematic pumping of a typical UHV system. (b) A typical UHV chamber.

Fig. 3.1(a) shows the pumping diagram for a typical system. A roughing pump is used to
pump the system down into the 10−3 mbar region. A typical roughing pump is an oil-sealed
rotary vane pump. The working principle of this type of pump is illustrated in Fig. 3.2. It
is immediately evident that a rotary vane pump will work well in the viscous flow regime but
not in the molecular flow regime where the mean free path of the molecules is very long and
the chance of the rest gas molecules hitting the small inlet valve of the pump is small. This
explains why the lowest reachable pressure with this pump is only 10−3 mbar.
The roughing pump is thus used as a first pumping stage in order to establish a pre-vacuum
for another type of pump that can operate in the molecular flow regime. The pump of choice
for this second stage is a so-called turbomolecular pump (see Fig. 3.3). The pump has a
large inlet to its main rotor, increasing the likelihood of molecules entering the pump. The
rotor is designed such that the gas molecules collide with the fast moving blades and thereby
attain some momentum in the direction of the roughing pump. In order to achieve efficient
pumping, the rotation speed has to be very high. Typical values are up to 80,000 rotations per
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calculation of the mean free path independent of the material and the points are measured
data from many elemental solids. The data points scatter around the calculation. The curve
is therefore often called a universal curve. We shall see that the reason for this universality
is that the inelastic scattering of electrons in this energy range is mostly involving excitations
of conduction electrons. The inelastic mean free path is related to the conduction electron
density and this is quite similar for the elemental solids.

Al
Ag
Au
Be
C
Fe
Ge

Hg
Mo
Ni
P
Se
Si
W

2
3

20

200

5

10

50

100

5 10 5020

electron kinetic energy  (eV)

100 500200 1000 2000

in
el

as
tic

 m
ea

n 
fr

ee
 p

at
h 

λ
  (

Å
)

theory

Figure 4.2: The inelastic mean free part of the electrons in solid. The dots are measurements
the dashed curve is a calculation. After Ref. [5].

The mean free path curve has a broad minimum around a kinetic energy of about 70 eV (note
the log-log scale). There it is less than 10 Å. This means that if we observe an electron with
this kinetic energy and this electron has left the solid without suffering an inelastic scattering
event, it must originate from the first few atomic layers. Moreover, if we can choose the
kinetic energy of the electrons, we can change the surface sensitivity. In the EELS experiment,
this can be done because we can vary the kinetic energy of the incoming beam E0, just by
changing the acceleration voltage of the electron gun. If we choose E0 ≈ 70 eV, we know
that the elastically scattered electrons must have been scattered in the first few atomic layers
and we also know that the discrete loss peaks, for example to one particular phonon, must
have happened in the first few layers. We can decrease the surface sensitivity either by going
to very low energies of only a few eV or to much higher energies of a several keV.
In some cases, we do not have the option to change the electron kinetic energy in order to
tune the surface sensitivity of the experiment. In this situation, a frequently used trick is to
change the experimental geometry. This is illustrated in Fig. 4.3. With a given inelastic mean
free path, we can greatly enhance the surface sensitivity by going to a grazing incidence (or
emission) geometry. In this way, the electrons travel mostly close to the surface, even if their
mean free path is relatively long.

55



e-

e-

probed regionprobed region

near-normal incidence / emission grazing incidence / emission

e-

e-

Figure 4.3: With a given inelastic mean free path, the surface sensitivity of a scattering exper-
iment can be influenced by the experimental geometry. The near normal incidence geometry in
(a) is considerably less surface sensitive than the gazing incidence geometry in (b).

4.3 Physics of the inelastic mean free path

Let us now consider the interaction of electrons with solids in some more detail in order to
understand the basic physics of the electron inelastic mean free path. Before we do this, we
briefly discuss the difference between inelastic and elastic scattering and the conditions for the
latter process.
In an elastic scattering event the electron’s kinetic energy is (by definition) conserved, i.e.

Es = E0, (4.2)

where E0 is the energy of the incoming electrons and Es that of the scattered electrons. If we
treat the electrons as a particle wave of a certain de Broglie wavelength λe = 2π/k, we can
apply the usual von Laue scattering theory. In order to observe constructive interference from
the scattered electrons, we know that the Laue conditions needs to be fulfilled, i.e. k′−k = G,
where G is a reciprocal lattice vector and k (k′) is the wave vector of the incoming (outgoing)
electron wave.
However, the Laue conditions are usually derived for infinitely periodic, three-dimensional bulk
solids but here we have a situation in which the surface terminates the bulk. As we will discuss
in more detail in Chapter 7, this causes the Laue condition perpendicular to the surface to be
relaxed, as the periodicity in this direction is lost. We retain a two-dimensional version of the
Laue condition, stating that the momentum parallel to the surface is conserved, apart from a
surface reciprocal lattice vector g

k‖s = k‖0 + g (4.3)

The crystal itself provides perpendicular momentum such that (4.2) and (4.3) can be fulfilled
simultaneously. Observing the elastically scattered electrons provides information about the
surface reciprocal lattice and the surface geometry. This is exploited in a technique called low-
energy electron diffraction that is explained in more detail in Chapter 7. For the example of
the EELS experiment here, we only need to know that the intensity of the elastically scattered
beam can be increased strongly if the condition (4.3) is fulfilled.
For now we are more interested in inelastic scattering since it determines the inelastic mean free
path of the electrons and hence the surface sensitivity. We can already guess some properties
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Figure 5.8: Calculated photoemission cross sections as a function of photon energy for carbon,
oxygen and aluminium, after Ref. [8].

5.1.3 XPS binding energies

The most important information in XPS is contained in the observed binding energies of the
peaks. Not only do they reveal which chemical elements are present, they also give much more
subtle information about the chemical environment these elements are in. However, an exact
understanding of the observed binding energies is rather complicated. We distinguish between
initial state effects and final state effects. The former affect the binding energy of the initial
state before the photoemission event, for example by the chemical environment of the atom
of interest. The latter are due to the photoemission event itself and the nature of the final
state, i.e. an atom with a missing core electron or something more complex than that.
Before we discuss the detailed origin the binding energy shifts, we briefly address the question
why some core level peaks are split into two components and others are not. Such a splitting is
caused by the spin-orbit interaction. The spin-orbit interaction is a relativistic effect and thus
most important for heavy atoms. The coupling between orbital and spin angular momenta is
usually described in either the L − S (or Russel-Saunders) coupling scheme or in the j − j
coupling scheme. The L−S coupling is appropriate for light elements, where one couples the
orbital and spin angular momenta first to each other, to give the total orbital momentum L
and the total spin momentum S and then one combines these to the total angular momentum
J . The j − j scheme is applicable if the coupling between orbital and spin angular momenta
is so strong that l and s are no longer individual good quantum numbers for each electron but
only the total moment j is. Since s = 1/2, j can be either l+1/2 or l−1/2. For the resulting
j, there are the usual 2j + 1 orientation possibilities. In a p core level, for example, one
combines l = 1 and s = 1/2 to j = 3/2 and j = 1/2 with 4 and 2 possibilities, respectively.
This reproduces the 6 expected possible quantum states for p electrons. In an s core level,
the orbital angular momentum is zero and hence there is no splitting. In XPS, the coupling
scheme of choice is the j − j coupling because the the splitting must be strong in order to
be observable and this is only the case for heavy elements where the j − j scheme is more
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appropriate.
An example of the spin-orbit splitting is given in Fig. 5.9 which shows the 5d level of Bismuth.
In this case, the splitting is quite substantial, more than 1 eV. The two components correspond
to j = 3/2 and j = 5/2. The integrated intensity approximately reflects the number of electron
states in each component which is 4 and 6, respectively. The anti-parallel alignment of spin
and angular momentum (j = l− s) is always the more favourable one, hence it has the higher
binding energy.
Spin-orbit splitting is an initial state effect and almost entirely atomic in nature. The size of
the splitting and the relative intensity of the two components is approximately the same in
all compounds of the same element. Hence, it is also useful to identify the core levels in the
first place. The close vicinity of two peaks and their intensity ratio can be a hint towards a
spin-orbit split core level. The peaks thus cannot stem from an s level and in order to identify
the element in question, one can not only use the absolute binding energy of the peak but
also the size of the splitting as a characteristic quantity.
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Figure 5.9: Illustration of spin-orbit splitting in XPS using the Bi 5d core level.

For our further discussion of XPS binding energies, we continue with other initial state effects.
If one finds, for example, a C 1s peak in the XPS spectrum from a surface, then one may be
able to decide if the carbon is present in a CO2 or in a CF4 molecule. The reason is, that
the electronic environment of the carbon atom determines the electrostatic potential at the
location of the carbon core level wave function. In the case of CF4, the F atoms draw the
carbon valence electrons strongly away from the carbon. For the 1s electron, this leads to an
effective increase of the nuclear charge and it therefore increases the binding energy observed
in XPS. Fig. 5.10 shows the measured and calculated (see below) binding energies for the C
1s peak in different chemical environments. The chemical shift over the whole range is rather
large, so large that it can even be observed with a conventional x-ray source. Indeed, a shift
in a peak can be quite easily observed in any spectroscopic technique, even if the resolution
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is much poorer than the absolute width of the peak. High resolution is primarily needed to
resolve peaks with a small separation.
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Figure 5.10: Comparison between experimental and calculated (from Koopman’s theorem ) C 1s
binding energies. Note that the agreement is very good but only if one of the axes is shifted by
15 eV. The agreement is underlined by the line of slope one. After Ref. [9].

The use of synchrotron radiation and the thereby achievable high resolution permits the ob-
servation of much smaller shifts and additional peaks that are caused by atoms of the same
element being in slightly different environments. Fig. 5.11 shows the Ru 3d core level spec-
trum from a clean Ru(101̄0) surface. More precisely, it shows the j = 5/2 component that
is spectroscopically termed 3d5/2. Apart from the peak characteristic for ruthenium atoms in
their bulk crystal environment, two other peaks are resolved. These can be assigned to emis-
sion from the first two atomic layers of this surface. Such surface core level shifts (SCLS) are
often observed for the transition metals. SCLS both to higher and to lower binding energies
are found, so it is not a priori obvious which component in the spectrum is caused by the
bulk atoms. The fact that the SCLS is observable at all is immensely useful for surface XPS
investigations because it permits a direct spectroscopic access to what is happening to the
surface atoms, for example during a chemical reaction.
The sign of the SCLS observed on transition metal surfaces can be explained using the picture
given in Fig. 5.12. Transition metals are characterised by a partially filled d-band. When the
surface is created, the d-band is narrowed due to the smaller number of nearest neighbours,
as expected from the tight-binding picture discussed in Section 2.3. Consider the case of a
transition metal at the beginning of the series with a d band that is less than half filled. A
band narrowing would move the entire band above the Fermi level. This would mean that the
surface is charged: it is at a chemical potential different from the bulk. In order to avoid this
energy-expensive situation, there is a flow of charge between the bulk and the surface atoms

76



286 285 284

binding energy  (eV)

283

p
h

o
to

e
m

is
s
io

n
 i
n

te
n

s
it
y
  
(a

rb
. 
u

n
it
s
)

Sb

Sb S2 S1

S2

S1

Ru 3d5/2

hν=365eV

hν=405eV

hν=385eV

hν=355eV

hν=345eV

hν=335eV

Figure 5.11: A Ru 3d5/2 core level spectrum from a clean Ru(101̄0) surface. Apart from the bulk
peak Sb, two surface-related peaks are visible, one from the first (S1) and one from the second
layer (S2). After Ref. [10].

which leads to an electrostatic potential that shifts the whole d-band down to lower energies.
This electrostatic potential does also shift the core levels. The corresponding argument is
made for the case of more than half filling. This model largely explains the observed trend
over the transition metal series.
So far, we have only considered how the initial state affects the observed binding energy. We
have not considered the importance of final state effects or discussed how to calculate the
binding energy that we expect to measure in the first place. The most simple assumption
for such a calculation is that the measured binding energy is the orbital energy of the photo
ionised electron. This is known as Koopman’s theorem. It is illustrated in Fig. 5.13(a) and
it has been used to calculate the binding energies in Fig. 5.10. That Figure shows that the
approximation of Koopman’s theorem is rather good. When the calculated core level shifts are
plotted as a function of the experimental values, all points lie on a line of slope one, implying
that the trend of a chemical shift is reproduced correctly. There is, however, a constant offset
between the energies. Apparently, the calculated core level binding energies are systematically
too high by about 15 eV.
The problem in Koopman’s theorem is the following: When an electron is removed from the
core state, the other electrons in the system can reach a new ground state. This new ground
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Figure 7.6: The Woods terminology for describing surface reconstructions and overlayers.

Some examples for the application of the Woods nomenclature are given in Fig. 7.7. Note
that despite of its lack of generality, the Woods nomenclature is still useful because many
structures can be described by it.

fcc(100) fcc(111)

(2x2) c(2x2)(1x1)
(2x2) (1x1) (√3x√3)R30º

Figure 7.7: Examples for structures described by the Woods terminology.

A more general description of the surface structure is the so-called matrix notation . One
writes

o1 = m11a1 +m12a2,

o2 = m21a1 +m22a2.
(7.6)

or, equivalently, (
o1

o2

)
=

(
m11 m12

m21 m22

)(
a1

a2

)
. (7.7)

The description by a matrix is more complicated but all possible surface structures can be
described. The inspection of the matrix elements directly allows the classification of the
overlayer structures into the three types, illustrated in Fig. 7.8:

1. All the matrix elements are integer numbers: The surface / adsorbate and substrate
lattices are called simply related and the combined Bravais lattice is the same as that
of the surface / adsorbate.

2. Some matrix elements are rational: The surface / adsorbate and substrate lattices are
called rationally related. The combined translational symmetry is given by the distance
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it takes before surface / adsorbate lattice and substrate lattice come into coincidence
again.

3. Some matrix elements are irrational. In this case the surface / adsorbate lattice is
incommensurate with the substrate, and no true lattice for the whole system exists.

It is obvious that the relative strength of the substrate-adsorbate and adsorbate-adsorbate
interactions will favour one type of structure over the others.

(a) (b) (c)

Figure 7.8: Types of overlayers. (a) The overlayer is simply related to the substrate. (b)
The overlayer is rationally related to the substrate. (c) The overlayer and substrate lattices are
incommensurate with no common periodicity between substrate and adsorbate lattice.

7.3 Low energy electron diffraction (LEED), LEED pat-
terns and quantitative structure determination

Low-energy electrons are for surface structure what x-rays are for bulk crystal structure. We
already know the two reasons for this: (1) the inelastic mean free path for low energy electrons
in solids is short and therefore any technique based on such electrons is rather surface sensitive
and (2) for low kinetic energies, the electron de Broglie wavelength λe = h/p is similar
to typical distances in crystals and thus diffraction phenomena are to be expected. The
discovery of the electron’s wave nature was a milestone in the development of modern physics
and actually achieved by an experiment that would be classified as LEED today. It was the
diffraction of electrons from a nickel single-crystal by Davisson and Germer in 1927.
The quantitative structure determination with electrons instead of x-rays is unfortunately more
difficult, because the electrons interact with the solid much more strongly than x-rays. This
results in a refraction of the electron wave at the crystal-vacuum boundary and, even worse, it
leads to a high degree of multiple scattering, such that the usual approximation of kinematic
scattering has to be abandoned.
As we shall see below, there are two major applications for LEED. The first is to learn some-
thing from the pure inspection of the surface diffraction pattern. This gives immediate and
direct information about the surface order and quality. When the surface is reconstructed or
covered with an ordered adsorbate layer, the LEED pattern can quickly give some information
about the surface symmetry and periodicities. The second application of LEED is the quan-
titative structure determination. This is more difficult. One has to measure the diffraction
intensities as a function of the electron kinetic energy and compare them to sophisticated
multiple-scattering calculations for a model system. This model system has to be changed
until good agreement between calculated and measured intensities is achieved. Despite of this
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complicated procedure, LEED is the most important tool for quantitative surface structure
determination.

7.3.1 Instrumentation

Fig. 7.9 shows a typical LEED apparatus that can be found in almost every surface science
vacuum chamber. The LEED system has two major components: (1) an electron gun pro-
ducing a beam of monochromatic electrons and (2) a detector system that detects only the
elastically scattered electrons.
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screen
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Figure 7.9: A LEED system.

We already know how the electron gun works from Chapter 5. The detector consists of four
metal grids at different voltages and a fluorescent screen. The first grid (counted from the
sample) is on ground potential to ensure a field-free region around the sample. The next two
grids are set to the so-called retarding voltage. This voltage is slightly lower than the kinetic
energy of the electrons produced by the gun. It repels almost all the inelastically scattered
electrons. The elastically scattered electrons pass the next grid which is set to ground potential
again and are then accelerated towards the fluorescent screen which is set to a high positive
voltage. Elastically scattered electrons hitting the screen give rise to light emission that is
intense enough to be observed by the naked eye. Behind the screen there is a viewport in
the vacuum system so that the LEED pattern can be observed directly or recorded with a
camera.
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7.3.2 LEED diffraction pattern and their analysis

While a surface is somewhat between being two-dimensional and three-dimensional, we start
with the assumption of a purely two-dimensional case. The discussion of diffraction from a
two-dimensional lattice is very similar to that of a three dimensional crystal. We will therefore
only give a very short overview and not derive the conditions for constructive interference. The
derivation is exactly the same as for x-ray diffraction from a three-dimensional crystal.
The diffraction conditions for a two-dimensional lattice are given by the Laue conditions

(k
‖
s − k

‖
i ) = ∆k‖ = g, (7.8)

where k
‖
i and k

‖
s are the components of the incident (ki) and scattered (ks) electron wave

vectors parallel to the surface and g is a surface reciprocal lattice vector.
What about the third component of the electron’s wave vector, the one perpendicular to the
surface, i.e. k⊥i and k⊥s ? So far, these did not enter the discussion because the surface lattice
is only two-dimensional. For x-ray diffraction, there would be a third Laue condition but for
LEED there is not, because the introduction of the surface has destroyed the periodicity of
the solid in the direction perpendicular to it.
A condition for the vertical components k⊥i and k⊥s does, however, exist because of the
requirement of elastic scattering. Energy conservation implies that the wave vectors have to
have the same length, i.e.

|ks| = |ki|. (7.9)

These two conditions can be illustrated by changing the Ewald construction familiar from x-
ray scattering to the surface case. The bulk situation is shown in Fig. 7.10(a): We draw a
ki-vector that ends at the origin of the reciprocal lattice and has the right length and direction
corresponding to our experimental setup. Then we draw a circle of radius |ki| around the
starting point of the vector. The intersection of this circle and the reciprocal lattice points gives
the possible final ks vectors, for which we observe constructive interference. This construction
ensures both that ∆k = g and that |ks| = |ki| because of the circle.
For the surface case, there is no Laue condition perpendicular to the surface and this is taken
into account by replacing the discrete points in the Ewald construction by rods perpendicular
to the surface. To justify this, we could argue that the real-space periodicity in the third
dimension is infinite, which means that the reciprocal lattice points have to be infinitely close
to each other, forming the rods. Now we expect constructive interference whenever a rod
intersects the sphere. Note that this is always going to happen for a sphere of sufficient size,
i.e. a sufficiently high electron energy. It is evident that we will see many more spots in the
two-dimensional case than in the three-dimensional case because the sphere does not have to
hit points in k-space, it just has to intersect with the rods.
We now apply theses concepts to the real LEED experiment. In most cases, the sample in
the LEED setup shown in Fig. 7.9 is oriented such that the electron beam hits the surface at
normal incidence, i.e. such that k

‖
i = 0. This greatly simplifies the analysis of the diffraction

patterns because the diffraction maxima can be directly associated with the surface reciprocal
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Figure 7.10: The Ewald construction for (a) the bulk case and (b) the surface case.

lattice. In fact, according to (7.8) we obtain that k
‖
s = g so that the diffraction pattern

directly shows the surface reciprocal lattice.
We also know the magnitude |ks| of the scattering electrons and with this we can calculate
the emission angle Θhk for a beam corresponding to the surface reciprocal lattice vector
g = hb1 + kb2 from sin Θhk = |g|/|ks|. Consider the imaging by the LEED apparatus (Fig.
7.11). The position of the diffraction maxima on the viewport (the distance from the centre
axis) is given by

dhk = R sin Θhk = R
|ks| |hb1 + kb2| = R ~√

2me

1√
E
|hb1 + kb2|, (7.10)

where R is the radius of the screen and E the kinetic energy of the electrons.

crystal

flourescent

screen

θhk

R
viewport

dhk

Figure 7.11: Imaging of the reciprocal lattice by LEED.

From equation. (7.10) we can see what happens when we change the kinetic energy of the
electrons. When increasing the energy, we will still see the same spots but they will move closer
to the centre of the viewport. New spots will move in on the sides of the screen that have not
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Figure 7.27: Structure SO2 + O on Cu(111) as determined by SEXAFS. After ref. [32].

and the p waves “above” the molecular plane is the same as “below” the plane, apart from
the sign difference in the p wave. Therefore, this particular excitation is only possible for a
molecular orbital of π character. Similar arguments can be made for the light polarisation
vector parallel to the plane of the molecule. In this case, only an excitation into orbitals of
σ symmetry is possible. Thus, the absorption due to a particular orbital will strongly depend
on the orientation of the molecule with respect to the polarisation vector of the light. If
the molecules are oriented by the surface, a different light polarisation need to be chosen to
achieve the excitation into a given orbital type.
This can be exploited in order to determine the molecular orientation with respect to the
surface, as illustrated in Fig. 7.29, again using the example of cobalt phthalocyanine. Shown
is a set of NEXAFS absorption spectra near the nitrogen K-edge. From the known electronic
structure of the molecule, the series of peaks closest to the edge are assigned to transitions
into orbitals of π∗ symmetry, whereas the broader peaks further away from the edge are due
to transition into σ∗ states. As the angle between light incidence and surface normal Θ is
changed, drastic intensity variations in the absorption spectrum are observed. For Θ closest
to 0◦ (90◦) the intensity of the σ∗ (π∗) states is highest. Since the polarisation vector of the
light is perpendicular to the light propagation direction, we can directly conclude from this
that the molecule is absorbed with the molecular plane parallel to the surface.

7.7 Photoelectron diffraction (PhD, PED)

7.7.1 Introduction

Photoelectron diffraction is yet another structural technique that is particularly well suited
to determine the structure of adsorbates on a surface. The principle is illustrated in Fig.
7.30. Consider the emission of a core level electron from an atom adsorbed on a surface,
as in a typical XPS experiment. In our discussion of XPS, we had described the final state
wave function as an outgoing wave with a symmetry given by the dipole selection rules (e.g.
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Figure 7.28: Illustration of the NEXAFS phenomenon. (a) Occupied (filled) and unoccupied
(empty) states for a molecule adsorbed on a surface, including core levels and molecular orbitals.
A strong adsorption can be expected when a core electron can be photoexcited into an unoccupied
molecular orbital. (b) and (c) When exciting the N 1s core level of the Co-phthalocyanine molecule
(sketch at the side), the dipole selection rules dictate the outgoing electron wave to have p
character. Excitation into the unoccupied π∗ LUMO is only possible when the light polarisation
vector is perpendicular to the molecular plane. This can be used to determine the orientation of
the plane with respect to the surface.

a p wave for and s initial state). As in EXAFS, the effect of photoelectron diffraction can
only be understood if we acknowledge that this final state is actually more complicated. A
convenient way to think about the final state is as follows: Consider a detector that measures
the photoemission intensity of the adsorbate core level in a certain direction. There are many
possibilities for the photoelectron to reach the detector. It can either travel on a direct path, or
it can reach it via one or several scattering events involving the atoms surrounding the emitter.
To calculate the intensity at the detector, we must take the coherent sum of the electron wave
amplitudes from all these possible scattering events. Note that this is quite similar to the
electron double-slit diffraction experiment which is a standard example in the development of
quantum mechanics. In photoelectron diffraction, the measured intensity depends on the de
Broglie wavelength of the photoelectrons that can be adjusted via the photon energy, and
the path length difference between the direct wave and the scattered waves. By varying the
emission angle or the kinetic energy of the emitted electrons, the interference conditions can
be changed. The resulting intensity modulation can be used to extract information about the
geometrical environment of the emitting atom.
The physics of PhD is related to SEXAFS and LEED. SEXAFS is similar to PhD in that the
electron source is also a core level in an atom at the surface but only the interference between
the outgoing and the 180◦ backscattered waves is of major importance. The backscattering
changes the final state amplitude at the core and this in turn changes the absorption cross
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Figure 7.29: NEXAFS data do determine the orientation of the molecular plane of adsorbed Co
phthalocyanine. After [33].

section. In a way, SEXAFS can be viewed as a kind of PhD with the difference that the emitter
itself is also the detector.
It should be noted that the PhD modulations do, of course, also contain the SEXAFS part, i.e.
the modulations in the absolute cross section. This is, however, not a problem because the
SEXAFS modulations are much weaker (1-3%) than the PhD modulations (30-50%). Indeed,
the PhD modulations are more than merely a small correction to the XPS intensity of a core
level. This is something one needs to be aware of when using XPS, e.g. for the quantitative
determination of an adsorbate coverage. The PhD effect has the potential to induce a severe
error in such an analysis.
The big difference between SEXAFS and PhD on the one hand and LEED is on the other hand
is that the electron source in the latter is not in the system itself but in the far-field. It is not
possible to pick an atom in the adsorbate layer and make it special by considering just the core
level intensity from that atom. All the atoms are of equal importance as scatterers (apart from
their possibly different scattering cross sections). The information about the adsorbate layer
relative to the substrate is only contained in the wave-part scattered by the adsorbate and its
interference with the wave-part scattered by the substrate. In PhD and SEXAFS the position
of the adsorbate relative to the substrate is contained in ALL scattering pathways. A further
difference is that LEED is a true diffraction technique that relies on the long-range order in
the adsorbate layer. PhD and SEXAFS only probe the local structure around the adsorbate.
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Figure 7.48: Principle of the atomic force microscope. An atomically sharp tip is mounted at
the apex of a flexible cantilever. As it is moved across the surface, the force between the surface
atoms and the tip leads to a deflection of the cantilever and this can be measured by the reflection
of a laser beam.

a qualitative agreement with experiment but it illustrates the basic physical principle behind
dynamic AFM. We describe the motion of the entire cantilever as a vibration of a harmonic
oscillator with an effective mass m. The oscillator is driven by an external harmonic force of
amplitude Fext and frequency ω. It has a force constant γc and, in the absence of damping,
a resonance frequency ω0 = (γc/m)0.5. Finally there is a damping that is proportional to the
velocity. The damping is quantified by the so-called quality factor Q. This is a dimensionless
number. The higher Q, the smaller the damping. The equation of motion is then

m
d2z

dt2
+
mω0

Q

dz

dt
+mω2

0z = Fext cosωt, (7.22)

After some transient time, the steady state solution of this problem is that the oscillator follows
the externally imposed frequency ω, i.e. that

z(t) = A cos(ωt− φ), (7.23)

with A being the (real) amplitude of the oscillation and φ the phase difference between the
motion of the oscillator and the external excitation. For the amplitude one finds

A =
Fext/m√

(ω2
0 − ω2)2 + (ωω0/Q)2

. (7.24)

From this we see that resonance in the absence of damping (Q very large) is achieved when
ω = ω0. The existence of damping slightly changes the resonance frequency. By taking the
derivative of (7.24) with respect to ω one finds that the resonance frequency in the presence
of damping is

ω′0 = ω0

√
1− 1

2Q2
. (7.25)
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For the cantilevers used in AFM Q ≈ 104, implying that the damping is sufficiently small to
ignore the difference between ω′0 and ω0. When the excitation frequency is changed and the
amplitude is monitored, a resonance curve as in Fig. 7.49 is obtained.
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Figure 7.49: Resonance curves for a free AFM cantilever and a cantilever in the presence of an
attractive / repulsive tip-surface interaction.

What happens now if we bring the vibrating cantilever close to the surface? It is easy enough
to modify the equation of motion such that it includes the tip-surface interaction Fts(z)

m
d2z

dt2
+mω2

0z +
mω0

Q

dz

dt
= Fts(z) + Fext cosωt, (7.26)

but the trouble with solving this equation is that vibrational amplitude of the cantilever can
be quite big in AFM (A > 10 nm), so that the tip spends only a small fraction of the cycle
close to the atoms of the surface and Fts(z) varies dramatically over one cycle. Moreover,
Fts(z) is not known and several types of forces contribute to it.
In order to illustrate the key-idea of dynamic AFM, however, we make the (invalid) assumption
that Fts(z) can be linearized for the motion of the cantilever. Then, we can readily determine
the new resonance frequency of the cantilever by combining the force constant of the free
cantilever with that due to the tip-surface interaction

Feff = −mω2
0z + Fts(z) = −(γc + γts)z, (7.27)

giving

ω =

√
k

m
=

√
γc + γts
m

. (7.28)

If we assume that γc � γts, we can expand the vibrational frequency as

ω(γc + γts) = ω(γc) +
d

dγ
ω(γc)γts + ... (7.29)

158



and finally obtain

ω(γc + γts) ≈ ω0 +
1

m

1

2
√
γc/m

γts = ω0 +
γc
m

1

2
√
γc/m

γts
γc

= ω0 +
ω0γts
2γc

. (7.30)

The frequency shift depends on the ratio between γts and γc and on the sign of γts for attractive
and repulsive interactions. Is there any hope to measure it? Let us assume that γts is of the
order of a typical interatomic force constant in a solid, something we can get out of Young’s
modulus or the typical vibrational frequencies. This gives γts ≈ 1 Nm−1 (very approximate).
The force constant of a typical cantilever is γc ≈ 10 Nm−1 and since frequencies can be
measured very precisely, detecting the resulting shift is quite possible.
In practice, dynamic AFM experiments use two different strategies. The first tracks the local
resonance frequency, as the tip is moved across the surface. This is done using a clever
feedback mechanism rather than measuring a resonance curve for every point of an image.
The frequency shift can then be used as an image of the surface topography. This mode of
dynamic AFM is called frequency modulation AFM or sometimes also non-contact AFM. It is
the preferred mode for UHV experiments aiming at high resolution. Using this mode of AFM,
it has been possible to obtain atomically resolved images of many insulator and semiconductor
surfaces, among others Si(111)(7× 7), something that had long been an elusive goal in AFM
[45].
An example of this is given in Fig. 7.50 that shows both non-contact AFM and STM images
of the TiO2(110) surface. The surface structure of TiO2(110) is sketched in Fig. 7.50(a). It
is terminated by rows of oxygen atoms and these rows are clearly visible in the AFM image of
Fig. 7.50(b), along with a weaker corrugation along the rows. The surface shows prominent
defects on the rows and these have been identified as single hydrogen atoms, forming an
OH group with the topmost oxygen atom. The STM image in Fig. 7.50(c) has been taken
simultaneously with the AFM image. In contrast to all other STM images in this book, it is
not a constant current image but just a measurement of the tunnelling current through the
conductive AFM tip as it is moved along the surface. The image shows the atomic corrugation
along the rows even clearer than the AFM image. The OH groups, on the other hand, are
imaged less prominently than in the AFM image. At first glance, it is quite surprising that
taking any kind of STM image is at all possible because TiO2 has a band gap of more than
3 eV and is thus too insulting for electron spectroscopy. It turns out, however, that TiO2

crystals can be heavily doped by heating in vacuum, a process that creates oxygen vacancies.
This is commonly done to allow electron spectroscopy on this material. For an intrinsic TiO2,
the STM image in (c) could not have been taken but the AFM image could.
Another approach to dynamic AFM is to excite the cantilever with a fixed frequency ω and
to monitor the changes in the vibrational amplitude, as the tip approaches the sample. This
technique is called amplitude modulation AFM. We can see how the presence of the surface
would affect the amplitude by inspecting the resonance curves in Fig. 7.49. If we excite
the cantilever with the free resonance frequency ω0 and the tip-surface interaction shifts the
resonance curve, we would obtain a smaller amplitude, no matter if the tip-surface interaction
is attractive or repulsive. We could actually also distinguish between attractive and repulsive
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Figure 7.50: (a) Structure of the TiO2(110) surface. (b) Non-contact AFM image. (c) Tun-
nelling current measured during the acquisition of the AFM image. After [46].

tip-surface interactions by exciting the cantilever slightly off its resonance frequency, at ω′. In
this case, a repulsive interaction would increase the observed amplitude whereas an attractive
interaction would decrease it. Amplitude modulation AFM is frequently used in air and in water
to obtain high resolution. Note again, that the picture of a constant tip-surface force constant
is a strong oversimplification. Even the sign of the force can change in one cycle.

7.10 Further reading

For a more detailed discussion of surface thermodynamics, consult the general surface physics
books listed in the Preface. For the basics of surface structure, consider especially the book
by Woodruff and Delchar. Details on LEED can be found in
• Low energy electron diffraction by J. B. Pendry, Academic Press, 1974.
• Low energy electron diffraction by M. Van Hove, W. H. Weinberg and C. M. Chan,

Springer, 1986.
For photoelectron diffraction, see
• Photoelectron diffraction by D. P. Woodruff in Angle Resolved Photoemission, ed.

S. D. Kevan, Elsevier, 1992.
For x-ray absorption techniques, also consider the book by Woodruff and Delchar and
• NEXAFS Spectroscopy by J. Stöhr, Springer 2010.

For STM and AFM, see
• Scanning Probe Microscopy and Spectroscopy: Methods and Applications by R. Wiesen-

danger, Cambridge University Press, 1994.

7.11 Discussion and Problems

Discussion

1. Explain the phenomena of surface relaxation and reconstruction and their physical origin.
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2. Explain the Woods and matrix nomenclatures for surface reconstructions and ordered
overlayers and discuss their advantages and restrictions.

3. Explain how the technique of low-energy electron diffraction (LEED) works experimen-
tally.

4. Discuss what the inspection of a LEED diffraction pattern can tell you about the structure
of a surface under investigation. What type of information is not readily obtained from
a mere inspection of the LEED pattern?

5. What is the reason for the strong intensity variations observed in LEED I-V curves?
6. How can LEED be used to determine surface structures quantitatively, e.g. in order to

find the precise position of adsorbed atoms within the surface unit cell.
7. Explain the basic idea behind x-ray absorption techniques such as NEXAFS, EXAFS and

SEXAFS. What can be learned from these experiments?
8. Explain the basic idea behind photoelectron diffraction. How can this phenomenon be

used for surface structure determination.
9. Explain the working principle of a scanning tunnelling microscope (STM), especially how

imaging in the constant current mode works.
10. How does the tunnelling current in STM depend on the tip-sample distance and why?
11. What is the physical interpretation of a constant current mode STM image measured

with a very small bias voltage?
12. Explain the working principle of an atomic force microscope (AFM).
13. Discuss the differences between STM and AFM and the samples these techniques can

be used on.

Problems

1. LEED: Fig. 7.13 shows the energy dependence of the (0,0) spot of Ni(100). In practice
this means that you have to measure the normal incidence reflectivity of the crystal for
electrons. How would you do this? (This is a tricky question, if you lack the right
idea for an answer, simply ignore this and go on). The finite width of the LEED I/V
peaks is caused by two effects: (1) Electron waves that fulfil the Bragg-condition in
a perfect crystal will eventually get totally reflected (therefore band gaps open at the
Brillouin zone boundary when a potential is present). This leads to a limited number of
scatterers producing the I/V peaks and therefore to a finite width of the peak. (2) The
limited mean free path of the electrons in the sample also leads to a finite width of the
peaks. Make a very simple estimate of the penetration depth of the electrons from the
peak width. Hint: calculate the ∆k corresponding to the peak width ∆E and use the
uncertainty principle.

2. LEED: The measurement and analysis of the (-2,1), (0,-2) and (0,2) beams if Fig. 7.17
starts at a rather high energy. Why? Hint: Consider that the measurement is practically
done by tracking the spots on the LEED screen.

3. LEED: Draw a possible structural model and the LEED pattern for
• Cu(001)(

√
2×
√

2)R45◦-O
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• Cu(001)(
√

2× 2
√

2)R45◦-O
• Cu(111)(

√
3×
√

3)R30◦-O
For the first two structures, are there notations that avoid the roots?

4. Surface reconstructions: Show that a(
22 0
−1 2

)
(7.31)

reconstruction on Au(111) does in fact give rise to a rectangular unit cell as shown in
Fig. 7.42(b).

5. Surface overlayers: (a) Discuss in general how the relative strength of adsorbate-
adsorbate and adsorbate-substrate interactions can be expected to determine if an adsor-
bate overlayer is simply related, rationally related or incommensurate with the substrate.
(b) Discuss the specific example of graphene on transition metal surfaces.

6. STM: Assuming a small tunnelling voltage and the validity of the Tersoff and Hamann
model for the interpretation of STM images taken in the constant current mode, we
have argued that the Cl atoms on jellium would not be detectable by STM (see Fig.
6.7). Speculate how the appearance of the Cl atoms might change as you increase the
tunnelling voltage, going either to positive or to negative bias voltages.

7. STM: The oxygen-induced rows of the reconstruction appear to be well-resolved in the
STM images of Fig. 7.45 but the step edges on the surface are quite fuzzy. Give a
plausible explanation for this.

8. STM: Some adsorbates can be seen by STM experiments at low temperatures but not at
higher temperatures, even though other techniques (name a possible technique) clearly
indicate that the adsorbates are neither desorbed or dissolved in the bulk. Discuss how
this can be possible.

9. Surface structure determination: Compare the different techniques for surface structure
determination presented in this Chapter, comparing their restrictions and advantages.
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Figure 8.16: Surface state dispersion on Cu(111). (a) Projected bulk band structure of Cu(111)
(hatched blue area) with the surface state dispersion in red. (b) ARPES spectra taken at different
emission angles close to the surface normal direction. (c) Grey-scale image of the same data.

on Cu(111). Shown is the measured photoemission intensity with the axes already converted
to binding energy and k‖. When using a spectrometer with a high angular resolution, the state
does not longer resemble a simple parabola, but two parabolas shifted against each other along
k‖ [55], such that their crossing point at k‖ = 0 is no more the point with the highest binding
energy. It is tempting to believe that the splitting between the bands is somehow related to the
complex herringbone reconstruction on Au(111) (see Fig. 7.42) that is absent for Cu(111).
However, the effect of the reconstruction on the surface state dispersion is only very small
and the splitting is caused by an altogether different effect, the spin-orbit interaction, that
is much stronger in heavy metal gold than in copper. Indeed, using higher resolution still a
much smaller spitting of the same kind can also be observed for the Cu(111) surface state
[56].
The spin-orbit interaction is a relativistic effect known from the splitting of core levels in atoms
with l 6= 0. For deep core levels in heavy atoms, where the electron speed near the nucleus
can approach the speed of light, the splitting can be quite strong and we have seen that a
splitting of several electron volts is observed, even for the shallow core levels of the heavy
element bismuth (Fig. 5.9). For valence electrons one would expect the splitting to be smaller
but here it is still observable. In the special case of a two-dimensional electron system, such
as a surface state, a spin-orbit splitting can be caused by an electric field perpendicular to the
plane the electrons move in. We know that there is such a field near the surface of a metal
because of the quite general effect of an electron spill-out discussed in connection with Fig.
2.10. For a free electron-like two-dimensional state in the presence of such an electric field,
the modification of the dispersion due to spin-orbit splitting has been predicted by Rashba to
be

E(k) =
~2k2

2me

± α~k. (8.20)
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The first term is the kinetic energy of the free electron and the second term is the correction
due to the spin-orbit interaction. The ± sign stands for the two different spin directions of the
electrons and α is a scaling parameter that, among other things, includes the strength of the
electric field perpendicular to the plane of the surface. Fig. 8.17(b) and (c) show this resulting
dispersion for free electrons without spin-orbit interaction (α = 0) and a finite α, respectively.
We see that a finite α splits the band into two branches with binding energy maxima moved
away from k = 0, as expected by re-writing (8.20) as

E(k) =
~2

2me

(
k ± αme

~2

)2

− α2me

2~2
, (8.21)

and in perfect agreement with the data from the Au(111) surface state. It is interesting to
note that the splitting lifts the spin-degeneracy of the state. Whereas a “normal” band in a
solid can accommodate two electrons per k value, one for each spin direction, this degeneracy
has been lifted in the Rashba model, except for the band crossing at k = 0. The states are
spin-split and the direction of the spin is indicated by arrows in Fig. 8.17(c).
It is easy to come to a qualitative understanding of the Rashba-type spin-orbit splitting.
Suppose that an electron moves in the plane of the surface and that the electric field is
perpendicular to the surface. The electron experiences the Lorentz-transformed electric field
as a magnetic field that is also lying in the surface but perpendicular to the k vector of the
electron. Now the electron’s energy depends on the orientation of its spin with respect to this
magnetic field (parallel or anti-parallel) and this causes the splitting. The splitting increases
with the magnitude of k because the kinetic energy does.
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Figure 8.17: (a) Measured surface state dispersion on Au(111) (photoemission intensity) from
Ref. [57]. (b) Free electron dispersion (Rashba model with α = 0). (c) Rashba model with
α 6= 0. The spin-degeneracy is lifted and the spin direction is indicated by the arrows pointing
into and out of the plane of the paper.

While the Shockley states appear in the nearly free electron model, one can also approach
the question of surface states from the opposite viewpoint, namely in a tight-binding picture.
There the atomic orbitals that stick into the vacuum because the atoms’ neighbours have
been cut off, have very different electronic properties than the equivalent bulk orbitals and
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Figure 9.1: Phonon dispersion of a one-dimensional chain with two atoms per unit cell (blue).
Chain-end localised solutions (red) are possible in the projected bulk band gaps at the Brillouin
zone boundary and above the bulk continuum at the zone centre.

in the square root. The two solutions converge to one at the point where the square root is
zero.
The simple model is thus giving us surface-localised vibrations in the projected bulk band
gaps, as we have found in the case of the electronic surface states. The extension to two-
dimensional surfaces is straight forward: As in the case of the electronic states, a necessary
(but not sufficient) condition for the existence of a surface vibrational mode is that this mode
is placed in a projected band gap of the bulk vibrational spectrum. We illustrate this by an
example. This time, we use the (0001) surface of the hcp metal beryllium. Fig. 9.2 shows the
bulk phonon dispersion of beryllium, the bulk Brillouin zone and its projection onto the close-
packed (0001) direction, giving the surface Brillouin zone. This projection is much simpler
than any of those we had seen for the fcc Brillouin zone.
Fig. 9.3 shows the projected bulk phonon dispersion for Be(0001) together with the surface
phonon modes, calculated and measured. We can understand the projection of the bulk phonon
structure from the dispersion in Fig. 9.2. Consider for example the Γ̄ point, i.e. k‖ = (0, 0).
This corresponds to the bulk Γ−A direction and an inspection of the dispersion in Fig. 9.2(a)
shows that there is no projected band gap in this direction. In fact, since the acoustic mode
of any material starts at Γ and ω = 0, the bulk phonon continuum at a surface Γ̄ will always
start at zero. For the M̄ point at the surface Brillouin boundary, we would have to consult
the M − L line. While this line is not given in the calculation of 9.2(a), both the M and the
L points are present and the acoustic branches have reached an energy of more than 50 meV
at both points. It is therefore fair to assume that there are no modes with a significantly
lower energy along the M − L line and that there is thus a large projected band gap for low
energies. This is indeed found in the projected phonon bands of 9.3. In fact, “guessing” where
the projected band gaps are is a lot easier for phonon bands than for electron bands because
similar gaps at low energies are always likely to be found along lines connecting points at the
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Figure 9.2: (a) Bulk Phonon dispersion of beryllium after Ref. [70]. (b) Bulk Brillouin zone
(BZ) of beryllium (hcp structure) and surface Brillouin zone of Be(0001) obtained by projection.

Brillouin zone boundary.
Fig. 9.3 also shows the dispersion of surface-localised vibrational modes. The filled red dots
are calculated surface modes using the same force constants that give a good description
of the bulk phonon dispersion and the open red symbols are the measured surface vibrational
frequencies using electron energy loss spectroscopy, a technique we shall describe later. Clearly
the agreement is not particularly good. The force-constants at the surface must be different
from the bulk values.
A characteristic surface vibration is the lowest-lying acoustic mode that is split off the bulk
continuum and most clearly visible at the surface Brillouin zone boundary near M̄ and K̄.
This surface acoustic mode is called the Rayleigh wave, as it has first been predicted by Lord
Rayleigh in 1885. It is found on many surfaces, including the surface of the earth where it
plays an important role in the propagation of earthquakes. Interestingly, we see that the slope
of the Rayleigh mode dispersion close to Γ̄ is smaller than for any of the other projected
acoustic modes. Also the highest energy of the Rayleigh mode is smaller than the lower edge
of energies from the bulk vibrations. This is consistent with the simple picture of softer force
constants, lower vibrational energies and a lower Debye temperature at the surface due to the
missing neighbour atoms.
Apart from these “intrinsic” surface vibrations, adsorbates on the surface lead to“extrinsic”
surface vibrations. Since adsorbed molecules are typically made of light elements with strong
bonds, these modes often lie above the bulk phonon continuum, at least for adsorption on
metals, such that they do not couple to bulk vibrations. They are therefore easily detectable and
a useful fingerprint for the chemical character of the adsorbates. In fact, the internal vibrational
frequencies of the adsorbates can be strongly dependent on the chemical bonding between
adsorbate and substrate and much can be learned by comparing the observed frequencies to
databases of vibrational frequencies for different chemical compounds.
The existing vibrational modes of adsorbed molecules are often shifted in frequency due to the
different chemical environment. But there are also new modes: the translational and rotational
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Figure 9.3: Bulk phonon dispersion of Be, projected onto the (0001) surface (blue dots). Cal-
culated surface phonon dispersion for Be(0001), calculated from the bulk force constants (filled
red markers) together with a measurement (open markers). After Ref. [71].

degrees of freedom of the free molecule are turned into new vibrations, the so-called frustrated
translations and rotation. Fig. 9.4 gives an example for the vibrational modes of a diatomic
molecule on a surface. Remember that such a molecule has only one vibrational mode when
it is free.
A measurement of the surface vibrations requires a probe that is coupling to these vibrations
and that can be used with sufficiently high resolution. The substrate phonon energies lie in
most cases below 50 meV. This means that the spectral resolution should be clearly better
than 10 meV. Three common probes are for surface vibrations are light, electrons and atoms.
Light has one outstanding advantage with respect to the other probes: It can be used without
the need of ultra-high vacuum, for example to study a“real” working catalyst or the surface
of a semiconductor during metal organic vapour phase epitaxy. Unfortunately, it is also much
less surface sensitive than the two other probes.

9.2 Electron energy loss spectroscopy

The first approach to vibrational spectroscopy we discuss here is electron energy loss spec-
troscopy (EELS). We have encountered the basic idea of this experiment already in Section
4.1 (see Fig. 4.1). The design of an EELS spectrometer is shown in Fig. 9.5. The instrument
consists only of components we have already encountered: an electron source, an electron
monochromator (actually two monochromators in series), electrostatic lenses that focus the
beam onto the sample, lenses which image the beam into a second double monochromator and
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Figure 10.3: (a) Dispersion of a surface plasmon polariton. (b) Coupling the surface plasmon
polariton to light be introducing a periodic structure on the surface.

dispersion. The absence of a crossing implies that we cannot excite the plasmon by a photon
while conserving both energy and momentum. Such a process would involve the annihilation
of a photon with (~ω, k) and the creation of a surface plasmon with the same (~ω, k), i.e. it
would be possible only if the two dispersion curves cross.
Exciting surface plasmons with light is very desirable. It would strongly couple the light field to
the surface and could therefore increase the surface-sensitivity of optical techniques. Surface
plasmons are also confined to the surface, so if they could be launched with a light pulse, they
could then propagate in a specially designed device. Indeed, for applications like this it would
be an advantage that they cannot easily decay by light emission either. All this is possible,
but the excitation is not straight-forward, as we have seen. There are essentially two ways of
circumventing the lack of a crossing between the light dispersion line and the surface plasmon
polariton. The first way to achieve a coupling is to use “slow” photons by using an imaginary
kz value. Then the dispersion line can be moved down, as indicated by the dashed line in
Fig. 10.3(a). Such light can be produced by a total reflection inside a prism mounted at a
short distance above the surface. In this case, an evanescent electric field penetrates the gap
between prism and surface. The field decays exponentially, i.e. it possesses an imaginary k in
the z direction.
Alternatively, one can fabricate a periodic structure on the surface, e.g. a grating or a regular
array of holes. Suppose that this structure has the periodicity a, then its reciprocal unit cell
has the periodicity 2π/a. In such a periodic structure, k is only defined plus or minus a
reciprocal lattice vector and the surface plasmon polariton branch starts not only at k = 0
but at every reciprocal lattice point. Now other branches cross the light dispersion lines, as
sketched in Fig. 10.3(b). Since the k-scale for the dispersion is very small, so must be the
reciprocal length 2π/a. This is easy to achieve, since it means that the lattice constant of the
artificial structure has to be fairly large (see Problem 1). The same effect can be created, to
some degree, by a rough surface that can be viewed as a superposition of many gratings with
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different periodicities.

10.3 Reflection Anisotropy Spectroscopy (RAS)

The technique of Reflection Anisotropy Spectroscopy (RAS) allows surface-sensitive optical
spectroscopy despite the large penetration depth of light. This surface sensitivity is achieved by
the following symmetry-based trick: The optical response of a solid is dictated by its complex
dielectric tensor ε or by the complex refraction tensor N . In the case of crystals with an
inversion centre, such as a cubic crystal, the tensor is reduced to a complex scalar and we
have only addressed this situation so far. Consequently the normal-incidence reflectivity of a
cubic crystal should not depend on the azimuthal orientation of the polarisation vector. This is
only true, however, for the dielectric response of the bulk crystal; at the surface the inversion
symmetry is broken. Any azimuthal anisotropy in the normal-incidence reflectivity of cubic
crystals must therefore have its origin in the surface region.
In a RAS experiment (see Fig. 10.4) one probes the difference in the (almost) normal-incidence
reflectivity along two mutually perpendicular orientations of the polarisation vector. Usually
one or both of these directions coincide with the principal crystallographic directions in the
surface. In Fig. 10.4, the incoming beam is linearly polarised and the polarisation vector lies
between two high-symmetry directions on the surface. Here an fcc(110) surface is used and
the directions are [001] and [11̄0], i.e. perpendicular and parallel to the closed-packed rows,
respectively. If the surface reflectance is different along these directions, the polarisation for
the reflected light is rotated, and this is analysed. Technically, this could be done by a single
rotating polariser but here it is done in combination with a photoelastic modulator.

polarizerpolarizer

photoelastic
modulator

sample

[001]
[110]

Figure 10.4: Setup for a RAS experiment. The difference in reflectance along two mutually
perpendicular directions is measured. After Ref. [82].

This technique is of course rather restricted: the only possible measuring geometry is normal
incidence, the bulk crystal has to have inversion symmetry and the surface must be chosen
such that it has two mutually perpendicular directions that are not symmetry-equivalent (i.e.
fcc(110) works but fcc(001) does not).
One example for the usefulness of RAS is the study of surface states on metal surfaces. Fig.
10.5 shows the electronic structure in the vicinity of the Ȳ point of the surface Brillouin zone
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